K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Đáp án C

Chọn hệ tọa độ Oxy như hình vẽ với  O 3 ≡ O , O 2 C ≡ O x , O 2 A ≡ O y .

Ta có 

O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4 ⇒ O 1 − 4 ; 0 .

Phương trình đường tròn  O 1 : x + 4 2 + y 2 = 25.

Phương trình đường tròn  O 2 : x 2 + y 2 = 9.

Kí hiệu H 1  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x = 0  khi x ≥ 0 .

Kí hiệu H 2  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x=0 khi x ≥ 0 .

Khi đó thể tích V cần tìm chíình bằng thể tích   V 2 của khối tròn xoay thu được khi quay hình H 2  xung quanh trục Ox (thể tích nửa khối cầu bán kính bằng 3) trừ đi thể tích  V 1  của khối tròn xoay thu được khi quay hình  H 1  xung quanh trục Ox.

Ta có V 2 = 1 2 . 4 3 π 3 3 = 18 π  (đvtt);

V 1 = π ∫ 0 1 y 2 d x = π ∫ 0 1 25 − x + 4 2 d x = 14 π 3  (đvtt).

 Vậy V = V 2 − V 1 = 18 π − 14 π 3 = 40 π 3  (đvtt).  

25 tháng 7 2019

Chọn đáp án D.

1 tháng 7 2019

Đáp án D.

Gắn hệ trục tọa độ Oxy sao cho O 1 ≡ O  (gốc tọa độ).

Phương trình đường tròn O 1 ; 5 là  x 2 + y 2 = 5 2 ⇒ y = ± 25 − x 2 .

Tam giác O 1 O 2 A  vuông tại O 2 , có  O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4.

Phương trình đường tròn O 2 ; 3 là  x − 4 2 + y 2 = 9 ⇒ y = ± 9 − x − 4 2 .

Gọi V 1 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 1 được giới hạn bởi các đường y = 9 − x − 4 2 ,   y = 0 ,   x = 4 ,   x = 7 quanh trục tung  ⇒ V 1 = π ∫ 4 7 9 − x − 4 2 d x .

Gọi V 2 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 2 được giới hạn bởi các đường y = 25 − x 2 ,   y = 0 ,   x = 4 ,   x = 5 quanh trục tung  ⇒ V 2 = π ∫ 4 5 25 − x 2 d x .

Khi đó, thể tích cần tính là:

V = V 1 − V 2 = π ∫ 4 7 9 − x − 4 2 d x − π ∫ 4 5 25 − x 2 d x = 40 π 3 .

5 tháng 4 2019

Đáp án B

Ta có  V = π ∫ 0 π − sin x 2 d x = π ∫ 0 π sin 2 x d x

1 tháng 11 2018

Giải phương trình:

 Phương trình (1) có tối đa 1 nghiệm. Mà  f π = 0 ⇒ x = π là nghiệm duy nhất của (1).

Thể tích khối tròn xoay tạo thành là:

Chọn A.

8 tháng 3 2019

11 tháng 12 2018

Chọn đáp án B.

29 tháng 5 2019

Đáp án D

Thể tích khối tròn xoay cần tính là

V = π ∫ 0 π sin 2 2 x d x = π ∫ 0 π 1 − cos 4 x 2 d x = π 2 x − 1 4 sin 4 x 0 π = π 2 π − 0 = π 2 2 .

5 tháng 12 2019

Đáp án D

17 tháng 11 2017

Đáp án B.

Phương pháp: Ứng dụng tích phân để tính thể tích khối tròn xoay.

Cách giải: Gắn hệ trục tọa độ Oxy như hình vẽ:

Ta có:

Phương trình đường tròn: 

Phương trình parabol: 

Thể tích khối cầu 

Thể tích khi quay phần tô đậm quanh trục Ox là: 

=> Thể tích cần tính