K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$

Theo công thức Heron:

$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$

Bán kính đường tròn ngoại tiếp:

$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)

28 tháng 9 2023

Áp dụng đl sin vào tam giác ABC có:

\(\dfrac{AC}{sinB}=2R\\ \Leftrightarrow R=\dfrac{2\sqrt{2}}{sin\left(45\right)}:2=2\left(cm\right)\)

Vậy bán kính R của đường tròn ngoại tiếp tam giác ABC bằng `2` cm.

28 tháng 5 2021

undefinedChúc bạn học tốt

4 tháng 3 2018

Chọn đáp án B.

Ta có: A B 2   +   A C 2   =   B C 2  ( = 100)

Suy ra tam giác ABC vuông tại A.

Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm cạnh huyền BC.

Đường kính đường tròn là : d = BC = 10cm

Suy ra, bán kính đường tròn ngoại tiếp tam giác ABC là R = d/2 = 5cm

12 tháng 3 2017

Chọn B.

Áp dụng định lí Cosin, ta có

BC2 = AB2 + AC2 - 2AB.AC.cosA

= 32 + 62-2.3.6.cos600 = 27

Ta thấy:  BC2 + AB2 = AC2

Suy ra tam giác ABC vuông tại B

do đó bán kính R = AC : 2 = 3.

16 tháng 11 2019

Áp dụng định lí Cosin, ta có  B C 2 = A B 2 + A C 2 − 2 A B . A C . cos B A C ^

= 3 2 + 6 2 − 2.3.6. c o s 60 0 = 27 ⇔ B C 2 = 27 ⇔ B C 2 + A B 2 = A C 2 .

Suy ra tam giác ABC vuông tại B,  do đó bán kính R = A C 2 = 3.  

Chọn A.

14 tháng 12 2022
A
26 tháng 8 2017

24 tháng 3 2021

undefined