Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. (Đã tính AP=1cm) b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy: ^CMN = 900 - ^ACB/2; ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ
=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)
Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)
Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).
b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC
=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB
Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).
c) Sửa điểm E thành điểm R cho đỡ trùng.
+) C/m : ^BAC = 900 => AR = AC ?
Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB
Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:
\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).
+) C/m : AR = AD => ^BAC = 900 ?
Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)
=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông góc AC hay ^BAC = 900 (đpcm).
d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)
\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\)
\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)
\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)
Vậy hệ thức cần chứng minh là đúng => ĐPCM.
a) Có ^AOB = 1800 - ^OAB - ^OBA = 1800 - ^BAC/2 - ^ABC/2 = 900 + (1800 - ^BAC - ^ABC)/2 = 900 + ^ACB/2
b) Dễ thấy A,M,O,E cùng thuộc đường tròn đường kính OA (Vì ^AMO = ^AEO = 900) (1)
Ta có ^AOK = 1800 - ^AOB = 1800 - (900 + ^ABC/2) = 900 - ^ACB/2 = ^CEN (Do \(\Delta\)CEN cân tại C)
=> Tứ giác AOKE nội tiếp hay A,O,K,E cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra năm điểm A,M,K,O,E cùng thuộc một đường tròn (đpcm).
c) Ta thấy A,O,K,E cùng thuộc một đường tròn (cmt) và OK cắt AE tại T
Nên \(\frac{KT}{ET}=\frac{AT}{OT}\)(Hệ thức lượng đường tròn). Kết hợp \(\frac{AT}{OT}=\frac{AB}{OB}\)(AO là phân giác ^BAT)
Suy ra \(\frac{KT}{ET}=\frac{AB}{OB}\). Mặt khác: ^BKN = ^OAE = ^BAO và ^NBK = ^OBA => \(\Delta\)BKN ~ \(\Delta\)BAO (g.g)
=> \(\frac{AB}{OB}=\frac{KB}{NB}\). Từ đây \(\frac{KT}{ET}=\frac{KB}{BN}\)=> KT.BN = KB.ET (đpcm).