cho hệ phương trình (m-1)x-y=2 và mx+y=m.tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0.Mình đang cần câu trả lời gấp vì sắp đi học nên mọi người giải hộ mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : x² + x² -12 = 0
a = 1 , b = 1 , c = -12
∆ = 1 -4 × 1 × (-12)
∆ = 49 > 0 .✓49 =7
Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !
bài 2 giải hệ phương trình
2x-y=1
x^2+xy+2y^2=4
=> y = 2x - 1
Thay vao x^2 + xy + 2y^2 = 4
<=> x^2 + x.(2x - 1) + 2.(2x - 1)^2 = 4
<=> x^2 + 2x^2 - x + 2.(4x^2 - 4x + 1) = 4
<=> x^2 + 2x^2 - x + 8x^2 - 8x + 2 - 4 = 0
<=> 11x^2 - 9x - 2 = 0
=> x = 1 => y= 1
hoac x = -2/11 => y = -15/11
Bài 2 giải hệ phương trình
2x-y=1
x^2+xy+2y^2=4 (*)
Ta có 2x-y=1 suy ra y=2x-1 (1)
(1) thay vào (*) ta được 5x^2-5x-2=0 Bấm máy tính giải pt bậc 2 là ra bạn
\(\hept{\begin{cases}x+my=1\left(1\right)\\mx+y=1\left(2\right)\end{cases}}\Leftrightarrow x\left(m+1\right)+y\left(m+1\right)=2\) (cộng theo vế (1) và (2) ; tách nhân tử chung)
\(\Leftrightarrow\left(x+y\right)\left(m+1\right)=2\) (3)
Để hệ có nghiệm duy nhất thì x = y = t
Thay vào (3) \(2a\left(m+1\right)=2\Leftrightarrow a\left(m+1\right)=1\)
Mà x,y > 0 nên a = x + y > 0
Suy ra \(\hept{\begin{cases}a>0\\m+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y>0\\m>-1\end{cases}}\)
Vậy với m > -1 thì phương trình có nghiệm duy nhất: x,y > 0 (không chắc)
`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
`a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`
Ta có: D = m − 1 3 m = m 2 + 3 ; D x = 2 − 1 5 m = 2 m + 5 ; D y = m 2 3 5 = 5 m − 6
Vì m 2 + 3 ≠ 0 , ∀ m nên hệ phương trình luôn có nghiệm duy nhất x = D x D = 2 m + 5 m 2 + 3 y = D y D = 5 m − 6 m 2 + 3
Theo giả thiết, ta có:
x + y < 1 ⇔ 2 m + 5 m 2 + 3 + 5 m − 6 m 2 + 3 < 1 ⇔ 7 m − 1 m 2 + 3 < 1
⇔ 7 m − 1 < m 2 + 3 ⇔ m 2 − 7 m + 4 > 0 ⇔ m > 7 + 33 2 m < 7 − 33 2
Đáp án cần chọn là: A