K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

a: Xét tứ giác ABMD có 

O là trung điểm của AM

O là trung điểm của BD

Do đó: ABMD là hình bình hành

18 tháng 12 2023

a: Xét tứ giác ABMD có

O là trung điểm chung của AM và BD

=>ABMD là hình bình hành

b: ta có:ABMD là hình bình hành

=>AD//MB và AD=MB

Ta có: AD//MB

M\(\in\)BC

Do đó: AD//CM

Ta có: AD=MB

MC=MB

Do đó: AD=MC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(MA=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCD có

AD//CM

AD=CM

Do đó:AMCD là hình bình hành

Hình bình hành AMCD có MA=MC

nên AMCD là hình thoi

c: Ta có: AMCD là hình thoi

=>AC vuông góc với DM tại trung điểm của mỗi đường

=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM

Xét ΔABC có

N,K lần lượt là trung điểm của AB,AC

=>NK là đường trung bình của ΔABC

=>NK//BC 

=>NK//MH

Xét ΔABC có

M,N lần lượt là trung điểm của BC,BA

=>MN là đường trung bình của ΔABC

=>MN//AC và \(MN=\dfrac{AC}{2}\)

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(HK=\dfrac{AC}{2}\)

=>MN=HK

Xét tứ giác MHNK có MH//NK và MN=HK

nên MHNK là hình thang cân

d: 

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(KA=KH=KC=\dfrac{AC}{2}\)

Ta có: ΔHAB vuông tại H

mà HN là đường trung tuyến

nên \(HN=AN=NB=\dfrac{AB}{2}\)

Xét ΔKAN và ΔKHN có

KA=KH

AN=HN

KN chung

Do đó: ΔKAN=ΔKHN

=>\(\widehat{KAN}=\widehat{KHN}=90^0\)

28 tháng 12 2021

a, tứ giác AMCD có: ID=IM;IA=IC

⇒tứ giác AMCD là hình bình hành

Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)

⇒tứ giác AMCD là hình chữ nhật

28 tháng 12 2021

b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)

    mà B∈CM và BM=CM

   ⇒AD//BM và AD=BM

   ⇒tứ giác ABMD là hình bình hành

25 tháng 12 2021

a: Xét tứ giác AMCD có

I là trung điểm của AC
I là trung điểm của MD

Do đó: AMCD là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

26 tháng 12 2021

undefined

Đề câu d lỗi

26 tháng 12 2021

cho em hỏi câu a sao góc MDB và góc CAD lại so le trong vậy ạ?

1: AM=5cm

2: Xét tứ giác AMCE có

D là trung điểm của AC

D là trung điểm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

3 Xét tứ giác ABME có 

ME//AB

ME=AB

Do đó: ABME là hình bình hành

4 tháng 1 2022

1. Xét tam giác ABC vuông tại A: 

\(BC^2=AB^2+AC^2\) (Định lý Pytago).

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right).\)

Xét tam giác ABC vuông tại A: AM là trung tuyến (gt).

\(\Rightarrow\) \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right).\)

2. M là trung điểm của BC (AM là trung tuyến của tam giác ABC).

\(\Rightarrow\) \(MC=MB.\)

Mà \(AM=\dfrac{1}{2}BC\left(cmt\right).\)

\(\Rightarrow\) \(MC=MB=AM=\dfrac{1}{2}BC.\)

Xét tứ giác AMCE: 

+ D là trung điểm AC (gt).

+ D là trung điểm ME (E là điểm đối xứng với M qua D).

\(\Rightarrow\) Tứ giác AMCE là hình bình hành (dhnb).

Mà \(AM=MC\) (cmt).

\(\Rightarrow\) Tứ giác AMCE là hình thoi (dhnb).

3. Tứ giác AMCE là hình thoi (cmt). \(\Rightarrow\) \(AE=MC\) và \(AE\) // \(MC\) (Tính chất hình thoi).

Mà \(MB=MC\left(cmt\right).\)

\(\Rightarrow\) \(AE=MB.\)

Xét tứ giác AEMB có:

\(AE=MB\left(cmt\right).\)

+  \(AE\) // \(MB\left(cmt\right).\)

\(\Rightarrow\) Tứ giác ABME là hình bình hành (dhnb).