Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác ABMD có
O là trung điểm chung của AM và BD
=>ABMD là hình bình hành
b: ta có:ABMD là hình bình hành
=>AD//MB và AD=MB
Ta có: AD//MB
M\(\in\)BC
Do đó: AD//CM
Ta có: AD=MB
MC=MB
Do đó: AD=MC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCD có
AD//CM
AD=CM
Do đó:AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Ta có: AMCD là hình thoi
=>AC vuông góc với DM tại trung điểm của mỗi đường
=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM
Xét ΔABC có
N,K lần lượt là trung điểm của AB,AC
=>NK là đường trung bình của ΔABC
=>NK//BC
=>NK//MH
Xét ΔABC có
M,N lần lượt là trung điểm của BC,BA
=>MN là đường trung bình của ΔABC
=>MN//AC và \(MN=\dfrac{AC}{2}\)
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(HK=\dfrac{AC}{2}\)
=>MN=HK
Xét tứ giác MHNK có MH//NK và MN=HK
nên MHNK là hình thang cân
d:
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(KA=KH=KC=\dfrac{AC}{2}\)
Ta có: ΔHAB vuông tại H
mà HN là đường trung tuyến
nên \(HN=AN=NB=\dfrac{AB}{2}\)
Xét ΔKAN và ΔKHN có
KA=KH
AN=HN
KN chung
Do đó: ΔKAN=ΔKHN
=>\(\widehat{KAN}=\widehat{KHN}=90^0\)
a: Xét tứ giác ABMD có
O là trung điểm của AM
O là trung điểm của BD
Do đó: ABMD là hình bình hành
a)Vì E là trung điểm AC suy ra AE=EC
Vì K đối xứng M qua E suy ra EM=EK
từ 2đk trên suy ra từ giác AKCM là hình bình hành
b)từ ý a suy ra AK//BC và AK=MC mà MC=BM suy ra BM=AK
tứ giác AKMB có AK//BM và AK=BM suy ra AKMB là hình bình hành
ta có AD=DM nên DB=DK hay B,D,K thẳng hàng