K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :


\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh

31 tháng 12 2023

a: Xét ΔADB và ΔADC có

AB=AC

AD chung

BD=CD

Do đó: ΔADB=ΔADC

b: Ta có: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

c: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

Do đó: ΔADM=ΔADN

=>AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

2 tháng 5 2022

a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

BC2= 32+42

BC2= 9+16

BC2=25

BC= 5 (cm)

Vì BD là phân giác 

=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)

gọi AD là x, CD là 4-x

=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)

5x= 3.(4-x)

5x= 12-3x

5x+3x=12

8x=12

x= 1,5 (cm)

Vậy AD= 1,5 cm

b. Xét tam giác ABC và tam giác HBA:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA

c. Vì tam giác ABC ~ tam giác HBA (cmt)

=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)

=> AB2=BC.HB

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Suy ra: BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HF là đường cao

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

hay AF/AC=AE/AB

Xét ΔAFE vuông tại A và ΔACB vuông tại A có 

AF/AC=AE/AB

Do đó:ΔAFE\(\sim\)ΔACB

4 tháng 3 2022

ôg ơi có hình vẽ k

 

a: Xét ΔAHN vuông tại N và ΔACH vuông tại H có

góc HAN chung

=>ΔAHN đồng dạng với ΔACH

b: ΔAHN đồng dạng với ΔACH

=>AH/AC=AN/AH

=>AH^2=AN*AC

c: Xét ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2=AN*AC

d: AM*AB=AN*AC

=>AM/AC=AN/AB

=>ΔAMB đồng dạng với ΔACN

Bài 1: 

a:  Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có 

MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)

hay MN=6(cm)

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔACB có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có

M là trung điểm của AB

MN//AC

Do đó: N là trung điểm của BC

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: \(MN=\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)