K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

\(\dfrac{a+b}{3}=\dfrac{b+c}{5}=\dfrac{c+a}{6}\\ \Leftrightarrow\left\{{}\begin{matrix}5a+5b=3b+3c\\5c+5a=6b+6c\\6a+6b=3c+3a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+2b-3c=0\left(1\right)\\5a-6b-c=0\left(2\right)\\a+2b-c=0\left(3\right)\end{matrix}\right.\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow8b-4c=0\Leftrightarrow2b=c\)

Từ \(\left(1\right)\left(3\right)\Leftrightarrow4a-4c=0\Leftrightarrow a-c=0\Leftrightarrow a=c=2b\)

\(\Leftrightarrow ac-4b^2=2b.2b-4b^2=4b^2-4b^2=0\left(đpcm\right)\)

17 tháng 3 2021

Đề bài bị nhầm phải ko bạn.

Ta đặt P=\(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\) .Ta cần chứng minh P\(\ge3\)\(\dfrac{b^3}{a}+ab\ge2b^2;\dfrac{a^3}{c}+ac\ge2a^2;\dfrac{c^3}{b}+bc\ge2c^2\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge2a^2+2b^2+2c^2-ab-ca-bc\ge ab+bc+ca\Rightarrow2\cdot P\ge2ab+2bc+2ca\left(1\right)\) \(\dfrac{b^3}{a}+a+1\ge3b;\dfrac{a^3}{c}+c+1\ge3a;\dfrac{c^3}{b}+b+1\ge3c\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge3a+3b+3c-3-a-b-c=2a+2b+2c-3\left(2\right)\) Cộng từng vế của 2 bđt (1) và (2) ta được:

\(\Rightarrow3\cdot\left(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=12-3=9\Rightarrow3P\ge9\Rightarrow P\ge3\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

17 tháng 3 2021

sao 2a\(^2+2b^2+2c^2-ab-ac-bc>ab+bc+ac\) vậy

7 tháng 3 2021

Ta có:

\(\dfrac{2a+b}{a+b}+\dfrac{2c+d}{c+d}+\dfrac{2b+c}{b+c}+\dfrac{2d+a}{d+a}=6\)

⇔ \(\left(\dfrac{2a+b}{a+b}-1\right)+\left(\dfrac{2c+d}{c+d}-1\right)+\left(\dfrac{2b+c}{b+c}-1\right)+\left(\dfrac{2d+a}{d+a}-1\right)=2\)

⇔ \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

⇔ \(\left(1-\dfrac{a}{a+b}\right)-\dfrac{b}{b+c}+\left(1-\dfrac{c}{c+d}\right)-\dfrac{d}{d+a}=0\)

⇔ \(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

⇔ \(\dfrac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)

⇔ \(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

⇔ \(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\dfrac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)

⇔ \(\left(c-a\right)\left(\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right)=0\)

⇒ \(\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}=0\)         \(\left(a\ne c\right)\)

⇒ \(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)

⇔ \(\left(bc+bd\right)\left(d+a\right)-\left(ad+bd\right)\left(b+c\right)=0\)

⇔ \(bcd+abc+bd^2+abd-abd-acd-b^2d-bcd=0\)

⇔ \(abc+bd^2-acd-b^2d=0\)

⇔ \(ac\left(b-d\right)-bd\left(b-d\right)=0\)

⇔ \(\left(b-d\right)\left(ac-bd\right)=0\)

⇒ \(ac-bd=0\)       \(\left(b\ne d\right)\)

⇔ \(ac=bd\)

Khi đó:

\(A=abcd=\left(ac\right)^2\)

⇒ \(ĐPCM\)

 

 

2 tháng 8 2023

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

20 tháng 1 2021

Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng

\(\Rightarrow\left(1\right)\) đúng

Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)

\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)

\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)

\(=2\left(a+b+c\right)\)

20 tháng 1 2021

Wao chắc ở giỏi toán lắm lun nè 😅

29 tháng 11 2017

a)

Gọi 3 phần của số A lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)\(a^2+b^2+c^2=24309\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a^2}{\left(\dfrac{2}{5}\right)^2}=\dfrac{b^2}{\left(\dfrac{3}{4}\right)^2}=\dfrac{c^2}{\left(\dfrac{1}{6}\right)^2}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)

\(\dfrac{a}{\dfrac{2}{5}}=32400\Rightarrow a=32400.\dfrac{2}{5}=12960\)

\(\dfrac{b}{\dfrac{3}{4}}=32400\Rightarrow b=32400.\dfrac{3}{4}=24300\)

\(\dfrac{c}{\dfrac{1}{6}}=32400\Rightarrow c=32400.\dfrac{1}{6}=5400\)

Vậy số A được chia thành 3 phần lần lượt là \(12960;24300;5400\)

29 tháng 11 2017

b) Đặt: \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a+c}{b+c}=t\)

Ta có: \(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}=t^2\)

\(\dfrac{a}{c}.\dfrac{c}{b}=t.t=\dfrac{a}{b}=t^2\)

Ta có đpcm

17 tháng 1 2022

weo

NV
17 tháng 1 2022

a.

\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)

2.

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)

Quay lại câu a

NV
28 tháng 8 2021

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\ge\sqrt[]{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Do đó:

\(VT\le\dfrac{2a^3}{2\sqrt{a^6bc}}+\dfrac{2b^3}{2\sqrt{b^6ac}}+\dfrac{2c^3}{2\sqrt{c^3ab}}=\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{abc}}=\dfrac{\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}{abc}\)

\(\le\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đặt \(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}=k\)

=>ab+ac=4k; bc+ab=6k; ac+bc=8k

=>ac-bc=-2k; ac+bc=8k; ab+ac=4k

=>ac=3k; bc=5k; ab=k

=>c/b=3; c/a=5

=>c=3b=5a

=>a/3=b/5=c/15