\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

weo

NV
17 tháng 1 2022

a.

\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)

2.

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)

Quay lại câu a

16 tháng 5 2018

C/m BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

Áp dụng BĐT Sơ-vác-sơ:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{x+y+z}\)

Ta có: \(9\dfrac{ab}{a+3b+2c}=\dfrac{9ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\left(1\right)\)

CM tương tự

\(\dfrac{9bc}{b+3c+2a}\le\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{b}{2}\left(2\right)\)

\(\dfrac{9ca}{c+3a+2b}\le\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\left(3\right)\)

Cộng vế (1), (2), (3) => đpcm

29 tháng 12 2017

Áp dụng bất đẳng thức Cauchy-Schwarz:\(\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{a+2b+c+c+3a}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{c+2a+b}\\\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{\left(1+1\right)^2}{b+2c+a+a+3b}=\dfrac{4}{4b+2c+2a}=\dfrac{2}{a+2b+c}\\\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{\left(1+1\right)^2}{c+2a+b+b+3c}=\dfrac{4}{4c+2a+2b}=\dfrac{2}{b+2c+a}\end{matrix}\right.\)

Cộng theo vế ta có:

\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}+\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}+\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{2}{c+2a+b}+\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}\)

Hay \(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\left(đpcm\right)\)

29 tháng 12 2017

Áp dụng BĐT Cô si dạng Engel ; ta có :

\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{\left(a+2b+c\right)+\left(c+3a\right)}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{2a+b+c}\\ \dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{\left(1+1\right)^2}{\left(b+2c+a\right)+\left(a+3b\right)}=\dfrac{4}{4b+2c+2a}=\dfrac{2}{2b+c+a}\\ \dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{\left(1+1\right)^2}{\left(c+2a+b\right)+\left(b+3c\right)}=\dfrac{4}{4c+2a+2b}=\dfrac{2}{2c+a+b}\)

\(\Rightarrow\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}+\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\\ \Rightarrow\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)

NV
22 tháng 4 2023

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{9}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)

Tương tự:

\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{c+a}+\dfrac{b}{2}\right)\)

\(\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{bc+ab}{c+a}+\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{6}\)

Dấu "=" xảy ra khi \(a=b=c\)

15 tháng 8 2018

Do \(a+b+c=1\) nên Bất đẳng thức trên tương đương:
\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\le\dfrac{3}{4}\)

\(\Leftrightarrow\left(1-\dfrac{1}{1+a}\right)+\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)

\(\Leftrightarrow3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)

Áp dụng BĐT cauchy-schwarz engel với a;b;c>0 ta có:

\(3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le3-\dfrac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=3-\dfrac{9}{4}=\dfrac{3}{4}\)

15 tháng 8 2018

Ta có:

\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{4}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{\left(1+1\right)^2}{\left(a+c\right)+\left(b+c\right)}\)Áp dụng BĐT Cauchy - Schwarz:

\(VT\le\dfrac{a}{4}.\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)=\dfrac{1}{4}.3=\dfrac{3}{4}\)\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

2 tháng 7 2017

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 cái kia rồi cộng lại

\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

2 tháng 7 2017

Mik ko hỉu pn ơi, ngay bước đầu ý

5 tháng 1 2018

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

5 tháng 1 2018

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1

5 tháng 11 2018

\(P=\dfrac{bc}{\dfrac{a^2bc}{c}+\dfrac{a^2bc}{b}}+\dfrac{ca}{\dfrac{b^2ac}{a}+\dfrac{b^2ac}{c}}+\dfrac{ab}{\dfrac{c^2ab}{b}+\dfrac{c^2ab}{a}}=\dfrac{\left(bc\right)^2}{a^2b^2c+a^2bc^2}+\dfrac{\left(ca\right)^2}{b^2a^2c+b^2ac^2}+\dfrac{\left(ab\right)^2}{c^2a^2b+c^2ab^2}=\dfrac{\left(bc\right)^2}{ab+ac}+\dfrac{\left(ca\right)^2}{ba+bc}+\dfrac{\left(ab\right)^2}{ca+cb}\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\ge\dfrac{3\sqrt[3]{\left(abc\right)^2}}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1

5 tháng 11 2018

3 phân số bé hơn hoặc bằng có thể giait hích ko