giúp mình nhé nhanh mình tick cho
tìm y y x 3 y 0,5 14,7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14\cdot7^{2021}=35\cdot7^{2021}-3\cdot49^x\)
\(\Rightarrow35\cdot7^{2021}-3\cdot49^x=14\cdot7^{2021}\)
\(\Rightarrow5\cdot7\cdot7^{2021}-3\cdot\left(7^2\right)^x=2\cdot7\cdot7^{2021}\)
\(\Rightarrow5\cdot7^{2022}-3\cdot7^{2x}=2\cdot7^{2022}\)
\(\Rightarrow3\cdot7^{2x}=5\cdot7^{2022}-2\cdot7^{2022}\)
\(\Rightarrow3\cdot7^{2x}=\left(5-2\right)\cdot7^{2022}\)
\(\Rightarrow3\cdot7^{2x}=3\cdot7^{2022}\)
\(\Rightarrow7^{2x}=7^{2022}\)
\(\Rightarrow2x=2022\)
\(\Rightarrow x=2022:2\)
\(\Rightarrow x=1011\)
Vậy \(x=1011\).
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
2) Ta có: \(\left(2x+1\right).\left(3y-2\right)=-55=\left(-1\right).55=1.\left(-55\right)=\left(-5\right).11=5.\left(-11\right)\)
- Ta có bảng giá trị:
\(2x+1\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(55\) |
\(3y-2\) | \(1\) | \(5\) | \(11\) | \(55\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) |
\(x\) | \(-28\) | \(-6\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(5\) | \(27\) |
\(y\) | \(1\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) | \(19\) | \(-\frac{53}{3}\) | \(-3\) | \(-1\) | \(\frac{1}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-28,1\right);\left(-1,19\right);\left(2,-3\right);\left(5,-1\right)\right\}\)
3) Ta có: \(\left(x-2\right).\left(y+3\right)=5=\left(-1\right).\left(-5\right)=1.5\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y+3\) | \(-5\) | \(5\) | \(-1\) | \(1\) |
\(x\) | \(1\) | \(3\) | \(-3\) | \(7\) |
\(y\) | \(-8\) | \(2\) | \(-4\) | \(-2\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(1,-8\right);\left(3,2\right);\left(-3,-4\right);\left(7,-2\right)\right\}\)
4) Ta có: \(\left(2x+3\right).\left(y-5\right)=10=\left(-1\right).\left(-10\right)=1.10=\left(-2\right).\left(-5\right)=2.5\)
- Vì \(x\in Z\)mà \(2x+3\)là số lẻ \(\Rightarrow\)\(2x+3\in\left\{-1,1,-5,5\right\}\)
- Ta có bảng giá trị:
\(2x+3\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y-5\) | \(-10\) | \(11\) | \(-2\) | \(2\) |
\(x\) | \(-2\) | \(-1\) | \(-4\) | \(1\) |
\(y\) | \(-5\) | \(16\) | \(3\) | \(7\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-2,-5\right);\left(-1,16\right);\left(-4,3\right);\left(1,7\right)\right\}\)
Ta có: xy-x+y=6
=> x(y-1)+(y-1)=6-1
=> (y-1)(x+1)=5
Vì x, y là số nguyên dương nên x+1 và y-1 là ước dương của 5
Ta có bảng sau
x+1 | 1 | 5 |
x | 0 | 4 |
y-1 | 5 | 1 |
y | 6 | 2 |
Mà x, y là số nguyên dương nên
(x;y)=(4;2)