K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

Tìm x, y nguyên biết: 2x (3y – 2) + (3y – 2) = -55

=>(3y – 2)(2x + 1) = -55

=> 2x + 1 = -55/(3y - 2) (1)

Để x nguyên thì 3y – 2 ∈ Ư(-55) = {1; 5; 11; 55; -1; -5; -11; -55}

  • 3y – 2 = 1 => 3y = 3 => y = 1, thay vào (1) => x = 28
  • 3y – 2 = 5 => 3y = 7 => y = 7/3 (Loại)
  • 3y – 2 = 11 => 3y = 13 => y = 13/3 (Loại)
  • 3y – 2 = 55 => 3y = 57 => y = 19 , thay vào (1) => x = -1
  • 3y – 2 = - 1 => 3y = 1 => y = 1/3 (Loại)
  • 3y – 2 = -5 => 3y = -3 => y = -1, thay vào (1) => x = 5
  • 3y – 2 = -11 => 3y = -9 => y = -3, thay vào (1) => x = 2
  • 3y – 2 = -55 => 3y = -53 => y = -53/3 (Loại)

Vậy ta có 4 cặp số x, y nguyên thoả mãn là: (x ; y ) = (28; 1), (-1; 19), (5; -1), (2; -3)

26 tháng 3 2017

Để \(\left(n-1\right)\left(n^2+2n+3\right)\) là số nguyên tố <=> \(n-1=1\) hoặc \(n^2+2n+3=1\)

TH1 : \(n-1=1\Rightarrow n=2\)

\(\Rightarrow\left(n-1\right)\left(n^2+2n+3\right)=\left(2-1\right)\left(2^2+2.2+3\right)=11\)là số nguyên tố (TM)

TH2 : \(n^2+2n+3=1\)

\(\Leftrightarrow\left(n^2+2n+1\right)+2=1\Leftrightarrow\left(n+1\right)^2+2=1\Rightarrow\left(n+1\right)^2=-1\) (loại vì \(\left(n+1\right)^2\ge0\) )

Vậy n = 2 thì \(\left(n-1\right)\left(n^2+2n+3\right)\)là số nguyên tố 

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

5 tháng 11 2023

Ta có:

n2 + 2n - 3 

= n2 + 3n - n - 3 

= n(n + 3) - (n + 3) 

= (n - 1)(n + 3)

Nên: n2 + 2n - 3 : n - 1 

= (n - 1)(n + 3) : (n - 1) 

= n + 3

Vậy với mọi x ∈ Z thì n2 + 2n - 3 : n - 1 luôn nguyên 

DT
5 tháng 11 2023

ĐK : n nguyên và n khác 1

\(n^2+2n-3=n\left(n-1\right)+3\left(n-1\right)\\ =\left(n-1\right)\left(n+3\right)\)

Để n^2 + 2n - 3 chia hết cho n - 1

Thì : (n-1)(n+3) chia hết cho n - 1

Mà : (n-1)(n+3) luôn chia hết cho n - 1 với mọi n nguyên và n khác 1

Vậy n thuộc Z, n khác 1

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

25 tháng 12 2021

undefined

9 tháng 4 2021

undefined

9 tháng 4 2021

`P=n^3-n^2+n-1`

`=n^2(n-1)+(n-1)`

`=(n-1)(n^2+1)`

Vì n là stn thì p là snt khi

`n-1=1=>n=2`

Vậy n=2

NV
16 tháng 4 2022

Gọi \(d=ƯC\left(n^2+n;2n+1\right)\)

\(\Rightarrow2\left(n^2+n\right)-n\left(2n+1\right)⋮d\)

\(\Rightarrow n⋮2\)

\(\Rightarrow2n+1-2.n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow n^2+n\) và \(2n+1\) nguyên tố cùng nhau

14 tháng 11 2023

giúp mik với

 

14 tháng 11 2023

nnhé