chứng minh rằng các số sau đây là số chính phương
C=11111....1(2n chữ số 1)+11111....1(n+1 chữ số 1)+66666...6(n chữ số 6)+8
D=44....48888...89(n chữ số 4, n-1 chữ số 8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{10^{2n}-1}{9}+\frac{10^n-1}{9}+6.\frac{10^n-1}{9}+8\)
\(B=\frac{10^{2n}}{9}-\frac{1}{9}+\frac{10^n}{9}-\frac{1}{9}+\frac{6.10^n}{9}-\frac{6}{9}+8\)
\(B=\left(\frac{10^n}{3}\right)^2+2.\frac{10^n}{3}.\frac{8}{3}+\left(\frac{8}{3}\right)^2-10^n=\left(\frac{10^n}{3}+\frac{8}{3}\right)^2-10^n\)
Đặt 11...1(n chữ số 1)=a
Thì 9a+1=10n
\(\Rightarrow M=...\)
\(=a.\left(9a+1\right)+a+4a+1\)
\(=9a^2+6a+1=\left(3a+1\right)^2\)