tam giác vuông cân có cạnh huyền bằng \(\sqrt{32}\) diện tích tam giác đó là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài cạnh góc vuông của tam giác vuông cân là a (0 < a < l)
Áp dụng định lí Pi-ta-go vào tam giác vuông ta có:
Diện tích tam giác vuông đó là:
Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)
Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2) \(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)
Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)
(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...
Gọi H là trung điểm của BC
=> AH là đường trung tuyến của tam giác ABC vuông cân tại A
=> AH là đường cao của tam giác ABC vuông cân tại A
AH = \(\frac{BC}{2}\) = \(\frac{a}{2}\)
SABC = \(\frac{AH\times BC}{2}=\frac{\frac{a}{2}\times a}{2}=\frac{a^2}{2}\times2=a^2\)
Đáp án C
Phương pháp: Diện tích xung quanh của hình nón: S x q = π R l
Trong đó : R bán kính đáy, l độ dài đường sinh.
Cách giải: Tam giác ABC vuông cân tại A, AH ⊥ BC
=> AH = HB = HC
Diện tích xung quanh của hình nón:
S x q = π R l