K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

30 tháng 12 2021

\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)

Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)

Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)

\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)

Vậy A là hợp số với \(n>1\)

Vậy \(n=1\)

30 tháng 12 2021

\(3,\)

Đặt \(A=n^4+n^3+1\)

\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)

Vậy \(n=2\)

27 tháng 9

Rffsdffdsff

3 tháng 7 2017

Đặt  \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)

\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\)   (1)

Đặt  \(t=n^2+8n\)   Vì n > 0 nên t > 0

Vì A là số chính phương đặt A=k2  \(\left(k\in N\right)\)   Vì t>0 => k > 0

(1)   \(\Rightarrow\)  \(t\left(t+7\right)=k^2\)        

\(\Leftrightarrow4t^2+28t-4k^2=0\)

\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)

\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)

\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)

Xét các ước của 49 với chú ý rằng  \(2t+7-2k< 2t+7+2k\)  vì k > 0 từ đó dễ dàng tìm được t

Sau đó ta tìm được các giá trị của n.

23 tháng 10 2023

#include <bits/stdc++.h>

using namespace std;
long long a[1000006];
long long n;
int main()
{
    for(int i=1;i<=1000006;i++){
        a[i]=i*i;
    }
    cin>>n;
    for(int i=1;i<=n;i++){
        if(a[i]%n==0){cout<<a[i]/n;break;}
    }
    return 0;
}

26 tháng 8

pịa

 

6 tháng 3 2021

https://h7.net/hoi-dap/toan-6/tim-n-biet-1-2-3-n-la-so-chinh-phuong-faq291864.html

bạn tham khảo