Chứng minh rằng: 2x2+4y2+4xy-6x+10 >0 Với mọi số thực x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)
b: \(4y^2+2y+1\)
\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)
\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)
\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)
c: \(-2x^2+6x-10\)
\(=-2\left(x^2-3x+5\right)\)
\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)
`#3107.101107`
a)
`x^2 + x + 1`
`= (x^2 + 2*x*1/2 + 1/4) + 3/4`
`= (x + 1/2)^2 + 3/4`
Vì `(x + 1/2)^2 \ge 0` `AA` `x`
`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`
Vậy, `x^2 + x + 1 > 0` `AA` `x`
b)
`4y^2 + 2y + 1`
`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`
`= (2y + 1/2)^2 + 3/4`
Vì `(2y + 1/2)^2 \ge 0` `AA` `y`
`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`
Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`
c)
`-2x^2 + 6x - 10`
`= -(2x^2 - 6x + 10)`
`= -2(x^2 - 3x + 5)`
`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`
`= -2[ (x - 3/2)^2 + 11/4]`
`= -2(x - 3/2)^2 - 11/2`
Vì `-2(x - 3/2)^2 \le 0` `AA` `x`
`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`
Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`
\(=x^2+4y^2+4xy+x^2-6x+9+1=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Ta có: \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\forall x;y\)
=> đpcm
a ) Đề sai
b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)
c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)
a) x2-6x+10
=(x^2-6x+9)+1
=(x-3)^2+1
vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0
Hay x^2-6x+10>0
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)