K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

Gọi d là ước chung của 7n + 4 và 5n + 3.

⇒ 7n + 4⋮d và 5n + 3⋮d

⇒ 5( 7n + 4)⋮d và 7( 5n + 3)⋮d

⇒35n + 20⋮d và 35n + 21⋮d

⇒35n + 20 - 35n - 21⋮d

⇒-1⋮d

⇒d là ước của -1. Mà Ư(-1) ={ 1; -1}

⇒d ∈ { 1; -1}

Như vậy ta thấy hai số 7n + 4 và 5n + 3 chỉ có hai ước là 1 và -1

Vậy phân số 7n+4/5n+3 là phân số tối giản

DD
19 tháng 5 2021

Đặt \(d=\left(6n+5,3n+2\right)\)

Suy ra \(\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}}\Rightarrow\left(6n+5\right)-2\left(3n+2\right)=1⋮d\Rightarrow d=1\)

Do đó ta có đpcm. 

12 tháng 4 2016

ƯCLN của 2 cái trên là 1 thì p/số đó sẽ tối giản.gọi ƯCLN là d

4m+8 chia hết cho d

2m+3 chia hết cho d=>4m+6 chia hết cho d

hiệu cũng sẽ chia hết cho d

có hiệu bằng 2.d thuộc 1;2

2m+3 chia hết cho d mà 2m luôn chẵn 3 lẻ nên 2m+3 lẻ.mà số lẻ luôn chỉ chia hết cho số lẻ nên d=1

vậy phân số đó luôn tối giản

11 tháng 4 2016

để p/số trên tối giản thì ƯCLN  là 1,gọi số đó là d

n+1:d,2n+2:d

2n+3-2n-2:d

1:d

d=1

vậy p/số đó luôn tối giản

11 tháng 4 2016

gọi ƯC(n+1;2n+3)=d

ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d

nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1

do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản

10 tháng 2 2016

Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :

4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)

=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )

=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau

=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N) 

3 tháng 5 2019

gọi d là ƯC(7n + 4; 5n + 3) 

=> 7n + 4 và 5n + 3 ⋮ d

=> 5(7n + 4) và 7(5n + 3) ⋮ d

=> 35n + 20 và 35n + 21 ⋮ d

=> (35n + 21) - (35n +20) ⋮ d

=> 1 ⋮ d

=> d = + 1

=> 7n+4/5n+3 là phân số tối giản

3 tháng 5 2019

Đặt \(\left(7n+4;5n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5.\left(7n+4\right)⋮d\\7.\left(5n+3\right)⋮d\end{cases}}}\)

                                \(\Rightarrow\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{7n+4}{5n+3}\)là phân số tối giản