Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :
4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)
=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )
=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau
=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N)
để p/số trên tối giản thì ƯCLN là 1,gọi số đó là d
n+1:d,2n+2:d
2n+3-2n-2:d
1:d
d=1
vậy p/số đó luôn tối giản
gọi ƯC(n+1;2n+3)=d
ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d
nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1
do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản
a) Đặt \(d=\left(3n-2,4n-3\right)\).
Suy ra \(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow4\left(3n-2\right)-3\left(4n-3\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(4n+1,6n+1\right)\).
Suy ra \(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow3\left(4n+1\right)-2\left(6n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
\(A=\frac{3n+2}{6n+3}\) là phân số tối giản <=>3n+2 và 6n+3 là 2 số ntố cùng nhau
Gọi (3n+2;6n+3)=d
=>3n+2 chia hết cho d <=>2(3n+2)chia hết cho d
<=>6n+4 chia hết cho d
mà 6n+3 cũng chia hết cho d nên
(6n+3)(6n+4) chia hết cho d
mà đây là 2 số liên tiếp
=>d=1
=>A là ps tối giản
nhớ tick mình nha ,cảm ơn
thôi còn thắc mắc gì nữa ko được ns như thế với bn mik nghe chưa.
Gọi \(d=ƯCLN\left(n+3;2n+5\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+3;2n+5\right)=1\)
\(\Leftrightarrow\)Phân số \(\dfrac{n+3}{2n+5}\) tối giản với mọi n
Báo đáp j ế!
Gọi \(d\) là \(UCLN\left(n+3;2n+5\right)\)
\(\Rightarrow n+3⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)
\(\Rightarrow2n+5⋮d\)
\(\Leftrightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(2n+6-2n-5⋮d\)
\(1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\dfrac{n+3}{2n+5}\) tối giản với mọi \(n\in N\)
Gọi d là ước chung của 7n + 4 và 5n + 3.
⇒ 7n + 4⋮d và 5n + 3⋮d
⇒ 5( 7n + 4)⋮d và 7( 5n + 3)⋮d
⇒35n + 20⋮d và 35n + 21⋮d
⇒35n + 20 - 35n - 21⋮d
⇒-1⋮d
⇒d là ước của -1. Mà Ư(-1) ={ 1; -1}
⇒d ∈ { 1; -1}
Như vậy ta thấy hai số 7n + 4 và 5n + 3 chỉ có hai ước là 1 và -1
Vậy phân số 7n+4/5n+3 là phân số tối giản
Đặt \(d=\left(6n+5,3n+2\right)\).
Suy ra \(\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}}\Rightarrow\left(6n+5\right)-2\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.