K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2022

\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)

13 tháng 11 2017

https://www.youtube.com/watch?v=cFZDEMTQQCs

j thế bạn

20 tháng 4 2020

khó quá làm sao mà trả lời đc

20 tháng 4 2020

Vắt óc đi

DD
3 tháng 6 2021

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(2\times A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(A=1-\frac{1}{128}\)

\(A=\frac{127}{128}\)

DD
3 tháng 6 2021

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

\(2\times B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)

\(B=1-\frac{1}{16}=\frac{15}{16}\)

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)

\(\Leftrightarrow4\times x+\frac{15}{16}=1\)

\(\Leftrightarrow4\times x=\frac{1}{16}\)

\(\Leftrightarrow x=\frac{1}{64}\)

11 tháng 8 2016

Ta có:

1/2+1/4+1/8+1/16+1/32=31/32

Vì có 5 tổng=> ta gọi phần còn lại là 5X

=>5X+31/32=2

=>5X+31/32=64/32

=>5X=64-32-31/32

=>5X=33/32

=>X=33/32:5

=>X=33/160

11 tháng 8 2016

  64/32 chứ không phải là 64-32 đâu nha

6 tháng 12 2018

Đề sai nha bạn hihi mình sửa luôn

\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\dfrac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\dfrac{32}{1-x^{32}}=VP\left(đpcm\right)\)

6 tháng 12 2018

cảm ơn bạn nha

13 tháng 11 2015

h) \(=\frac{x+1}{32}\)

31 tháng 1 2016

câu hỏi tương tự