Không tính giá trị hãy so sánh 2019/2020 VÀ 2018/2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\hept{\begin{cases}\frac{2019}{2020}< 1\\\frac{2018}{2018}=1\end{cases}\Rightarrow\frac{2019}{2020}< \frac{2018}{2018}}\)
Ta có :
\(\frac{2019}{2020}< 1\)
\(\frac{2018}{2018}=1\)
\(\Rightarrow\frac{2019}{2020}< \frac{2018}{2018}\)
#Riin
a )
Ta có :
\(A=18\times19=\left(17+1\right)\times19=17\times19+19\)
\(B=17\times20=17\times\left(19+1\right)=17\times19+17\)
Do \(17\times19+19>17\times19+17\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
b )
Ta có :
\(C=2019\times2019=\left(2018+1\right)\times2019=2018\times2019+2019\)
\(D=2018\times2020=2018\times\left(2019+1\right)=2018\times2019+2018\)
Do \(2018\times2019+2019>2018\times2019+2018\)
\(\Rightarrow C>D\)
Vậy \(C>D\)
Ta có \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\sqrt{4076360}\) và \(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
Mà \(\left(2\sqrt{4076360}\right)^2=16305440\) và \(4038^2=16305444\)
\(\Rightarrow2\sqrt{4076360}< 4038\)
\(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
\(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\cdot\sqrt{2018\cdot2020}\)
\(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
mà \(2\cdot\sqrt{2018\cdot2020}< 4038\)
nên \(\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
Cho A = 20203 và B = 2019. 2020. 2021. Không tính cụ thể các giá trị của A và B, hãy so sánh A và B.
2019 nhân 100 thì bằng 201900 > 20203
2020.2021 lớn hơn 100 suy ra b lớn hơn a
\(2019\times2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2=2020\times2020\)
Bg
a) Ta có: A = 2011.2011 và B = 2010.2012
Xét giá trị của B:
=> B = (2011 - 1).(2011 + 1)
=> B = 2011.(2011 - 1) + 1.(2011 - 1)
=> B = 2011.2011 - 2011 + 2011 - 1
=> B = 2011.2011 - 1
Vì 2011.2011 - 1 < 2011.2011
Nên A > B
Vậy A > B.
b) Tương tự ta cũng xét giá trị của A:
=> A = (2019 - 1).(2019 + 1)
=> A = 2019.2019 - 1
Vì 2019.2019 - 1 < 2019.2019
Nên A < B
Vậy A < B
a) Ta có: A = 2011.2011 và B = 2010.2012
Xét giá trị của B:
=> B = (2011 - 1).(2011 + 1)
=> B = 2011.(2011 - 1) + 1.(2011 - 1)
=> B = 2011.2011 - 2011 + 2011 - 1
=> B = 2011.2011 - 1
Vì 2011.2011 - 1 < 2011.2011
Nên A > B
Vậy A > B.
b) Tương tự ta cũng xét giá trị của A:
=> A = (2019 - 1).(2019 + 1)
=> A = 2019.2019 - 1
Vì 2019.2019 - 1 < 2019.2019
Nên A < B
Vậy A < B
\(\dfrac{2019}{2020}=1-\dfrac{1}{2020}>1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
\(\dfrac{2019}{2020}>\dfrac{2018}{2019}\)