chứng minh: \(2n^3+22n\) chia hết cho 6 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Thực hiện nhân đa thức và thu gọn
2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.
Thực hiện nhân đa thức và thu gọn
N(3 – 2n) – (n – 1)(1 + 4n) – 1 = 6n – 6 n 2 = 6(n – n 2 ) ⋮ 6.
Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)
Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)
Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3
Thật vậy
Ta có TH1: n = 3k + 1 (k thuộc Z)
=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3
TH2: n = 3k + 2 (k thuộc Z)
=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3
=> n(n + 1)(2n + 1) chia hết cho 3 (2)
Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n
bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
-Ta có: \(2^{4n}=16^n=\overline{...6}\)
\(\Rightarrow2^{4n}.4=\overline{...6}.4\)
\(\Rightarrow2^{4n+2}=\overline{...4}\)
\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)
\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)
\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)
-Như vậy, thì \(A⋮5\) hay \(B⋮5\).
-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.
-Chứng minh hai số đó không thể cùng chia hết cho 5:
-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.
-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5.
\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)
-Ta có: \(2^{2n}=4^n\).
+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.
+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)
\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).
\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.
\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.
\(\Rightarrow B\) không chia hết cho 5.
-Vậy.................
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
\(2n^3+22n\\ =2n\left(n^2+11\right)\\ =2n\left(n^2-1+12\right)\\ =2n\left(n^2-1\right)+12.2n=2n\left(n-1\right)\left(n+1\right)+24n\)
Vì n-1, n, n+1 là 3 số nguyên liên tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3. Mà (2,3)=1\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮2.3=6\Rightarrow2n\left(n+1\right)\left(n-1\right)⋮6\forall n\in Z\)
\(24⋮6\Rightarrow24n⋮6\forall n\in Z\)
\(\Rightarrow2n\left(n-1\right)\left(n+1\right)+24n⋮6\forall n\in Z\)
\(\Rightarrow2n^3+22n⋮6\forall n\in Z\)
\(\)