Cho tam giác ABC vuông tại A ,vẽ AH vuông góc với BC.Biết AB và AC lần lượt tỉ lệ với 3 và 4.Tính AH?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
b, Xét tam giác CHI và tan giác CAH có
^AIH = ^CHA = 900
^C _ chung
Vậy tam giác CHI ~ tam giác CAH (g.g)
\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)
1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)
3: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
TK
1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB
a: ΔAHB vuông tại H
=>AH<AB
b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
góc KAD=góc HBA
=>ΔKAD=ΔHBA
=>KD=HB và AK=BH
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
b: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
=>MN=AH
mà AH=4,8cm
nên MN=4,8cm
a) Để tính BC, ta sử dụng định lý Pythagoras trong tam giác vuông ABC:
BC^2 = AB^2 + AC^2
BC^2 = 6^2 + 8^2
BC^2 = 36 + 64
BC^2 = 100
BC = √100
BC = 10 cm
Để tính AH, ta sử dụng công thức diện tích của tam giác:
S = 1/2 * AB * AH
S = 1/2 * 6 * AH
S = 3AH
Vì tam giác ABC là tam giác vuông, nên diện tích tam giác ABC cũng có thể tính bằng cách sử dụng công thức diện tích tam giác vuông:
S = 1/2 * AB * AC
S = 1/2 * 6 * 8
S = 24
Vậy, ta có phương trình:
3AH = 24
AH = 8 cm
b) Để tính MN, ta sử dụng tỷ lệ giữa các đoạn thẳng trong tam giác đồng dạng. Ta có:
MN/BC = HM/AB = HN/AC
Vì HM và HN là đường cao của tam giác ABC, nên ta có:
HM = AH = 8 cm
HN = AH = 8 cm
Vậy, ta có:
MN/10 = 8/6
MN = (8/6) * 10
MN = 80/6
MN ≈ 13.33 cm