Trên cùng 1 nửa mặt phẳng có bờ chứa tia Ox, vẽ các tia Oy; Oz; Ot sao cho góc xOy< góc xOz< góc xOt. CMR:
a, Góc yOz< góc yOt.
b, các tia Oz, Ot thuộc cùng 1 nửa mặt phẳng có bờ là đg thẳng chứa tia Oy
c, Tia Oz nằm giữa 2 tia Oy và Ot
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Tia Ox cùng thuộc một nửa mặt phẳng có bờ chứa tia Oz
Tia Oy cùng thuộc một nửa mặt phẳng có bờ chứa tia Oz
b)
Các tia Ox và Oy thuộc hai nửa mặt phẳng bờ chứa tia Oy
c)
Vì hai tia Oz và Oy cùng thuộc một nửa mặt phẳng bờ chứa tia Ox và \(\widehat{xOy}< \widehat{xOz}\left(30^o< 70^o\right)\)nên tia Oy nằm giữa hai tia Ox và Oz
d)
Theo phần c), ta có:
\(\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)
\(30^o+\widehat{yOz}=70^o\)
\(\widehat{yOz}=40^o\)
Giải:
a) Vì +) Oy;Oz cùng ∈ 1 nửa mặt phẳng bờ chứa tia Ox
+) \(x\widehat{O}z< x\widehat{O}y\left(50^o< 140^o\right)\)
⇒Oz nằm giữa Ox và Oy
b) Vì Oz nằm giữa Ox và Oy
\(\Rightarrow x\widehat{O}z+z\widehat{O}y=x\widehat{O}y\)
\(50^o+z\widehat{O}y=140^o\)
\(z\widehat{O}y=140^o-50^o\)
\(z\widehat{O}y=90^o\)
Vì \(z\widehat{O}y=90^o\)
\(\Rightarrow z\widehat{O}y\) là góc vuông
c) \(\Rightarrow z\widehat{O}m+m\widehat{O}y=z\widehat{O}y\)
\(20^o+m\widehat{O}y=90^o\)
\(m\widehat{O}y=90^o-20^o\)
\(m\widehat{O}y=70^o\)
\(\Rightarrow x\widehat{O}z+z\widehat{O}m=x\widehat{O}m\)
\(20^o+50^o=x\widehat{O}m\)
\(\Rightarrow x\widehat{O}m=70^o\)
Ta thấy: \(x\widehat{O}m+m\widehat{O}y=x\widehat{O}y\)
Vì +) \(x\widehat{O}m+m\widehat{O}y=x\widehat{O}y\)
+) \(x\widehat{O}m=m\widehat{O}y=70^o\)
⇒Om là tia p/g của \(x\widehat{O}y\)
d) \(\Rightarrow m\widehat{O}x+x\widehat{O}n=m\widehat{O}n\)
\(70^o+110^o=m\widehat{O}n\)
\(\Rightarrow m\widehat{O}n=180^o\)
Vì \(m\widehat{O}n=180^o\) mà Ox nằm giữa Om và On
⇒Om và On là 2 tia đối nhau
Chúc bạn học tốt!
a) Ta có :
xOy' + y'Ox' =90 độ (gt)
y'Ox' + x'Oy = 90 độ (gt)
=> xOy' = 90 - y'Ox'
=> x'Oy = 90 - y'Ox'
=> xOy' = x'Oy (cùng bằng 90 - y'Ox')(dpcm)
b) Gọi Ot là pg y'Ox'(1)
=> y'Ot = x'Ot
tOy = tOx' + x'Oy
Mà y'Ot = tOx'
xOy' = x'Oy (cmt)
=> xOt = tOy
=> Ot là pg xOy (2)
Từ (1) và (2) ta có :
=> y'Ox' và xOy có cùng tia pg
Ta có: x O y ^ + x ' O y ^ = 90° và x O y ^ + x O y ' ^ = 90° => x ' O y ^ = x O y ' ^ .
Mặt khác Ox', Oy' nằm trên hai nửa mặt phẳng đối nhau bờ Ox nên Ox nằm giữa hai tia Ox' và Oy'.
Tương tự Oy nằm giữa hai tia Ox' và Oy'
Gọi Om là phân giác góc xOy, suy ra Oy
nằm giữa Ox' và Om, Ox nằm giữa Oy' và
Om, Om nằm giữa Ox và Oy.
Lại có Om là phân giác góc xOy
=> x O m ^ = y O m ^ và x ' O y ^ = x O y ' ^ (cùng phụ x O y ^ ). Do đó x ' O m ^ = y ' O m ^ .
=> Om cũng là phân giác của x ' O y ' ^ (ĐPCM)
Mặt khác Ox', Oy' nằm trên hai nửa mặt phẳng đối nhau bờ Ox nên Ox nằm giữa hai tia Ox' và Oy'.
Tương tự Oy nằm giữa hai tia Ox' và Oy'
Gọi Om là phân giác góc xOy, suy ra Oy nằm giữa Ox' và Om, Ox nằm giữa Oy' và Om, Om nằm giữa Ox và Oy.