Cho tam thức f(x)= x2 +2(m+3)x + m2 +m - 6 . Định m để: f(x) > 0 Vx\(\in\)R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2
\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)
\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)
Muốn một tam thức bậc 2 nhỏ hơn 0 với mọi x thì hệ số a phải nhỏ hơn 0 và Δ < 0 luôn
Cơ mà 1 > 0 rồi nên không có m thoả mãn
f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)
Bất phương trình có a=1>0
=>Bất phương trình đúng với mọi x thuộc tập số thực
<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)
\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)
\(\Leftrightarrow m^2-12m< 0\)
\(\Leftrightarrow0< m< 12\)
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
Do \(a=1>0\) nên \(f\left(x\right)\ge0;\forall x\) khi:
\(\Delta'=\left(m-3\right)^2-4m\le0\)
\(\Leftrightarrow m^2-10m+9\le0\)
\(\Rightarrow1\le m\le9\)