@someoneofffical:
Giải phương trình nghiệm nguyên:
\(x^2+y^2=3-xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2+2xy=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3-3xy\)
\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)
mà \(\left(x-y\right)^2\ge0,\forall x;y\inℤ\)
PT\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\)
\(TH1:\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\xy=-2\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\right\}\)
\(TH2:\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
Vậy \(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right);\left(1;1\right);\left(-1;-1\right)\right\}\)
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3.\left(1-xy\right)\)
\(\Leftrightarrow x-y=3\) và \(1-xy=3\)
\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right),\left(-1;2\right),\left(-2;1\right)\)
hoặc \(x-y=0\) và \(1-xy=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right),\left(-1;-1\right)\)
\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)
e tự xét 2 th ra
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
<=>x2(x+y)+y2(x+y)=2001
<=>(x+y)(x2+y2)=2001
=>x+y, x2+y2 E Ư(2001)={1;3;23;29;69;87;667;2001}
Rồi xét các trường hợp => x,y
\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp
\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)
+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)
+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)
em ms hok lóp 7 thui một năm nữa em sẽ giúp nhá sorry zery much
Ta có:
\(x^2+xy+y^2=3\) \(\left(\text{*}\right)\)
\(\Leftrightarrow\) \(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=3\)
\(\Leftrightarrow\) \(\left(x+\frac{y}{2}\right)^2=3-\frac{3y^2}{4}\)
Vì \(\left(x+\frac{y}{2}\right)^2\ge2\) nên \(3-\frac{3y^2}{4}\ge0\) , suy ra \(-2\le y\le2\) , tức là \(y\in\left\{-2;-1;0;1;2\right\}\)
Lần lượt thay các giá trị \(y\in\left\{-2;-1;0;1;2\right\}\) vào \(\left(\text{*}\right)\) , ta lần lượt tìm được các nghiệm là
\(\left(x;y\right)=\left\{\left(1;-2\right),\left(-1;-1\right),\left(2;-1\right),\left(-2;1\right),\left(1;1\right),\left(-1;2\right)\right\}\) (thỏa mãn \(x,y\in Z\) )