\(x^2+y^2=3-xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3.\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right),\left(-1;2\right),\left(-2;1\right)\)

hoặc \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right),\left(-1;-1\right)\)

29 tháng 8 2023

Dễ

26 tháng 3 2017

\(pt\Leftrightarrow\left(x-1\right)\left(x-2y^2-y+2\right)=1\)

Ok ?!

3 tháng 10 2016

x2+xy+y2=x2y2

\(\Leftrightarrow\left(y^2-1\right)x^2-xy-y^2=0\)(*)

Xét \(y^2=1\Leftrightarrow y=\pm1\)

  • Với \(y=1\)thay vào (*) ta có: \(x=-1\)
  • Với \(y=-1\)thay vào (*) ta có: \(x=1\)

Xét \(y\ne\pm1\) ta có: \(\Delta=y^2\left(4y^2-3\right)\)  là 1 số chính phương

Đặt \(\left(2y\right)^2-3=n^2\left(n\in N\right)\)

\(\Leftrightarrow\left(2y\right)^2-n^2=3\)

\(\Leftrightarrow\left(\left|2y\right|-n\right)\left(\left|2y\right|+n\right)=3\)

Vì \(\left(\left|2y\right|+n\right)\in N;\left(\left|2y\right|-n\right)\in N\)\(\Rightarrow2y+n\ge\left|2y\right|-n\)

Ta có hệ \(\hept{\begin{cases}\left|2y\right|+n=3\\\left|2y\right|-n=1\end{cases}}\Leftrightarrow\left|2y\right|=2\Leftrightarrow y=\pm1\)

Không thỏa mãn vì \(y\ne\pm1\)

Vậy ta có nghiệm của pt \(\left(x;y\right)\in\left\{\left(0;0\right);\left(-1;-1\right);\left(-1;1\right)\right\}\)

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

2 tháng 11 2017

1) Vì vai trò của x;y;z;t như nhau nên giả sử x≤y≤z≤tx≤y≤z≤t 

Suy ra x+y+z+t≤4tx+y+z+t≤4t 

↔xyzt≤4t↔xyz≤4↔xyzt≤4t↔xyz≤4 

Do x;y;z;t nguyên dương nên 0<xyz≤4→xyz=1;2;3;40<xyz≤4→xyz=1;2;3;4 

Xét 4 trường hợp sau: 

• TH1TH1 : xyz=1xyz=1 

→x=y=z=1→x=y=z=1 

Thay vào (1) có : 3+t=t3+t=t (vô lí) 

TH1TH1 không xảy ra: loại 

• TH2:xyz=2TH2:xyz=2 

Do x≤y≤z→x=y=1;z=2x≤y≤z→x=y=1;z=2 

Thay vào (1) có : 4+t=2t→t=44+t=2t→t=4 (thỏa mãn) 

(x;y;z;t) = (1;1;2;4) 

• TH3:xyz=3TH3:xyz=3 

→x=y=1;z=3→x=y=1;z=3 

Thay vào (1) có : 5+t=3t→2t=55+t=3t→2t=5 (vô lí vì 5 k chia hết cho 2) 

TH3TH3 k xảy ra : loại 

• TH4TH4 : xyz = 4 

+) x = 1; y = z = 2 

→5+t=4t→5=3t→→5+t=4t→5=3t→ t không là số nguyên

+) x=y=1;z=4x=y=1;z=4 

Thay vào (1) tìm được t = 2 (không thỏa mãn do z≤tz≤t(gt) mà z = 4 > 2 = t) 

TH4TH4 không xảy ra: loại 

Vậy (x;y;z;t) = (1;1;2;4) và các hoán vị

2)xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

5)

 Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)

   \(=196-3\left(5y-7\right)^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)

Mặt khác \(5y-7\equiv3\left(mod5\right)\)

\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)

mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)

Từ đó tính ra

\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)

\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)

\(=-75y^2+210y+49\)

\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)

\(=196-3\left(5y-7\right)^2\ge0\)

Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)

Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)

Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)

Đến đây ta xét trường hợp là ra.

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Câu 1)

Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)

Với \(x\geq 6\)

Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)

Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.

Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Bài 2)

Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.

TH1: \(x\geq 0\)

\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)

Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)

\(\Leftrightarrow -27x^2-36x+64\geq 0\)

Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$

Nếu \(x=0\Rightarrow y=0\)

Nếu \(x=1\rightarrow y=1\)

TH2: \(x<0\) thì \(y> 0\)

\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)

Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)

\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)

Nếu \(y=1\rightarrow x=1\)

Nếu \(y=2,3\) không có $x$ thỏa mãn.

Vậy \((x,y)=(0,0),(1,1)\)