Tìm giá trị lớn nhất của biểu thức:\(Q=\frac{3-4x}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
+Tìm Min:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)
Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(Min=-1\Leftrightarrow x=-2\)
+Tìm Max:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)
1 cách làm khác :3
\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)
\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)
Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)
\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)
Điểm rơi khó chết luôn á :(
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
\(D=\frac{4x+2}{x+1}=\frac{4x+4-2}{x+1}=\frac{4\left(x+1\right)-2}{x+1}=4+\frac{-2}{x+1}\)
Để D có GTLN \(\Leftrightarrow\frac{-2}{x+1}\)có GTNN
\(\Leftrightarrow x+1\)có GTLN, x+1<0 và x\(x\inℤ\)
\(\Leftrightarrow x+1=-1\)
\(x=-2\)
vậy, D có GTLN là 6 khi x=-2
Để D có GTNN \(\Leftrightarrow\frac{-2}{x+1}\)có GTLN
\(\Leftrightarrow x+1\)có GTNN, x+1>0 và x\(x\inℤ\)
\(\Leftrightarrow x+1=1\)
\(x=0\)
vậy, D có GTNN là 2 khi x=0
A lớn nhất \(\Leftrightarrow x^2-4x+9\)nhỏ nhất
\(x^2-4x+9\Leftrightarrow\left(x-2\right)^2+5\ge5\)
Vậy \(MaxA=\frac{1}{5}\Leftrightarrow x=2\)
A lớn nhất khi x^2-4x+9 nhỏ nhất
Ta có x^2-4x+9=(x^2-4x+4)+5
=(x-2)^2+5
Mà (x-2)^2≥0 với mọi x
=) (x-2)^2+5≥5 với mọi x.
=)A ≤ 1/5
Dấu "=" xảy ra khi:
x-2=0 =) x=2
Vậy Max A=1/5 (=) x=2
Ta có:
\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(\Rightarrow\frac{1}{x^2-4x+8}\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=2\)
Bài toán không có giá trị nhỏ nhất.Giải toán có sự trợ giúp của Wolfram|Alpha
Ta có :
\(Q=\frac{3-4x}{x^2+1}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
Dấu ''='' xảy ra <=> 2x + 1 = 0 <=> x = -1/2
Vậy GTLN Q là 4 <=> x = -1/2
Ta có: \(Q=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)
Ta thấy: \(\frac{\left(2x+1\right)^2}{x^2+1}\ge0\Rightarrow4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)với \(\forall x\)
Dấu "=" xảy ra khi 2x+1=0<=>x=-1/2
Vậy MaxQ = 4 khi x=-1/2'
Đánh điện thoại lâu quá:vvvv