cho biết kết quả của các điều kiện hoặc biểu thức sau đây
a/ số 98 là số chính phương
b/ 123 mod 5=6
c/ hình tứ giác có bốn cạnh bằng nhau là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD có 4 góc vuông
=> ABCD là hình chữ nhật
ABCD có AB = BC = CD = DA
nên ABCD là hình thoi
a/
Xét \(\Delta ABC\) có
MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)
Xét \(\Delta ADC\) có
QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\) (3) Và PQ // AC (4)
Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)
Ta có MN // AC (2)
Xét tg ABD có
MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)
Gọi O là giao của MP và NQ. Từ (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)
\(\Rightarrow AC\perp BD\)
Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau
c/
Nếu MNPQ là hình thoi => QM=MN (1)
Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)
Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)
Từ (1) (2) và (3) => AC=BD
Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau