K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ABCD có 4 góc vuông

=> ABCD là hình chữ nhật

ABCD có AB = BC = CD = DA

nên ABCD là hình thoi

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Đáp án C

27 tháng 12 2021

Phát biểu C

27 tháng 12 2021

Phát biểu C

 

25 tháng 11 2021

a/

Xét \(\Delta ABC\) có

MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)

Xét \(\Delta ADC\) có

QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\)  (3) Và PQ // AC (4)

Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)

Ta có MN // AC (2)

Xét tg ABD có 

MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)

Gọi O là giao của MP và NQ. Từ  (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)

\(\Rightarrow AC\perp BD\) 

Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau

c/

Nếu MNPQ là hình thoi => QM=MN (1)

Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)

Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)

Từ (1) (2) và (3) => AC=BD

Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau