Cho tam giác ABC cân tại A ( A< 90 độ).Trên tia đối của AB và AC lần lượt là các điểm D và E sao cho AD=AE.Gọi O là giao điểm của 2 đường thẳng BE và CD.Chứng minh rằng:
a,Tam giác AEB=tam giác ADC
b,OE=OD
c,O,A,H thẳng hàng (với H là chân đường vuông góc kẻ từ O với BC)
a, Xét ΔAEB và ΔADC có:
AB = AC; ˆEAB=ˆDACEAB^=DAC^ (đối đỉnh); AE = AD
⇒ ΔAEB = ΔADC (c.g.c) (Đpcm)
b, ΔAEB = ΔADC (c.g.c) ⇒ ˆAEB=ˆADCAEB^=ADC^
Lại có ˆAED=ˆADEAED^=ADE^ (ΔADE cân tại A do AD = AE)
⇒ 180o−ˆAED−ˆAEB=180o−ˆADE−ˆADC180o−AED^−AEB^=180o−ADE^−ADC^
⇒ ˆOED=ˆODEOED^=ODE^
⇒ ΔODE cân tại O ⇒ OD = OE (đpcm)
c, ΔAEB = ΔADC (c.g.c) ⇒ EB = DC mà OE = OD
⇒ EB + OE = DC + OD ⇒ OB = OC
⇒ ΔOBC cân ở O
⇒ Đường cao OH cũng là trung tuyến
hay H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
⇒ AH cũng là đường cao hay AH ⊥ BC mà OH ⊥ BC
⇒ O, A, H thẳng hàng (đpcm)
K CHO MÌNH NHÉ