K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

- Thay x = 1 vào hệ phương trình ta được :\(\left\{{}\begin{matrix}m-y=2\\3+my=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=y+2\\my=2\end{matrix}\right.\)

- Thay m ở PT(I) vào PT ( II ) ta được :\(y\left(y+2\right)=2\)

\(\Leftrightarrow y^2+2y-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1-\sqrt{3}\\y=-1+\sqrt{3}\end{matrix}\right.\)

- Thay lại y vào PT ( I ) ta được : \(\left[{}\begin{matrix}m=1-\sqrt{3}\\m=1+\sqrt{3}\end{matrix}\right.\)

Vậy tồn tại 2 giá trị của m là \(1\pm\sqrt{3}\) thỏa mãn yêu cầu đề bài .

 

NV
15 tháng 1

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m\\3x+my=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)x=2m+5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)

Thay vào \(x+y=1-\dfrac{m^2}{m^2+3}\)

\(\Leftrightarrow\dfrac{3m+5}{m^2+3}+\dfrac{5m-6}{m^2+3}=1-\dfrac{m^2}{m^2+3}\)

\(\Leftrightarrow\dfrac{8m-1}{m^2+3}=\dfrac{3}{m^2+3}\)

\(\Leftrightarrow8m-1=3\)

\(\Rightarrow m=\dfrac{1}{2}\)

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

8 tháng 1

loading...

23 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=2m\\x+my=m+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=2m-mx\\x+m\left(2m-mx\right)=m+1\left(1\right)\end{matrix}\right.\)

(1) ⇔x+2m2-m2x=m+1

⇔x(1-m2)=m+1-2m2

TH1: 1-m2=0

⇔m=\(\pm\)1

-Thay m= 1 vào (2) ta có: 0x =0 (luôn đúng)

⇒m=1(chọn)

-Thay m=-1 và (2) ta có: 0x=-2 (vô lí)

⇒m=-1(loại)

TH2: 1-m2 ≠ 0

⇔m ≠ \(\pm\) 1

⇒HPT có nghiệm duy nhất: 

x= \(\dfrac{-2m^2+m+1}{1-m^2}\)

y= \(2m-m.\dfrac{-2m^2+m+1}{1-m^2}\)

⇔y= \(2m+\dfrac{-2m^3-m^2-m}{1-m^2}\)

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Tới đây bạn tự làm tiếp nhé