Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d\left(M;\Delta\right)=\dfrac{\left|3.2+4.5-m\right|}{\sqrt{3^2+4^2}}=1\)
\(\Leftrightarrow\left|26-m\right|=5\Rightarrow\left[{}\begin{matrix}m=21\\m=31\end{matrix}\right.\)
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}} = \left( {3;4} \right),\overrightarrow {{n_2}} = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia
Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)
Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)
Ta có \(\frac{6}{3} = \frac{8}{4} \ne \frac{{ - 13}}{{ - 27}}\) nên hai đường thẳng này song song với nhau.
Chọn điểm \(A(9;0) \in \Delta '\) ta có:
\(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta } \right) = \frac{{\left| {6.9 + 8.0 - 13} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{41}}{{10}}\)
Vậy khoảng cách giữa hai đường thẳng đã cho là \(\frac{{41}}{{10}}\)
Lời giải:
Vì PTĐT cần tìm song song với $(\Delta)$ nên nó có dạng:
$3x-4y+m=0$
Khoảng cách từ $M$ đến đt cần tìm là:
$\frac{|3.2-4.(-2)+m|}{\sqrt{3^2+4^2}}=2$
$\Leftrightarrow |m+14|=10$
$\Rightarrow m=-4$ hoặc $m=-24$
Vậy PTĐT cần tìm là: $3x-4y-4=0$ hoặc $3x-4y-24=0$
Đường thẳng \(\Delta\) nhận (3;-4) là 1 vtpt
a. Do \(d_1||\Delta\) nên \(d_1\) cũng nhận (3;-4) là 1 vtpt
Phương trình d1:
\(3\left(x-2\right)-4\left(y-5\right)=0\Leftrightarrow3x-4y+14=0\)
b. Do d2 vuông góc \(\Delta\) nên d2 nhận (4;3) là 1 vtpt
Phương trình d2:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)
Chắc chắn đây là 1 đề bài sai rồi.
Do I cố định nên \(d\left(I;\Delta\right)\) cố định
Do đó S max khi AB max, AB max khi R max, mà R có thể tiến tới vô cực
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)