K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2021

a.

Gọi \(M\left(x;y\right)\in d\)

\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)

\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)

b.

Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)

\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)

\(\Leftrightarrow7a^2+48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)

\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)

NV
23 tháng 3 2022

\(d\left(M;\Delta\right)=\dfrac{\left|3.2+4.5-m\right|}{\sqrt{3^2+4^2}}=1\)

\(\Leftrightarrow\left|26-m\right|=5\Rightarrow\left[{}\begin{matrix}m=21\\m=31\end{matrix}\right.\)

a: Vì Δ//d nên Δ: 3x-4y+c=0

Thay x=1 và y=4 vào Δ, ta được:

c+3-16=0

=>c=13

b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0

Thay x=-3 và y=-5 vào Δ, ta được:

c+4*(-3)+3(-5)=0

=>c-27=0

=>c=27

=>4x+3y+27=0

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}}  = \left( {3;4} \right),\overrightarrow {{n_2}}  = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia

Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)

Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có \(\frac{6}{3} = \frac{8}{4} \ne \frac{{ - 13}}{{ - 27}}\) nên hai đường thẳng này song song với nhau.

Chọn điểm \(A(9;0) \in \Delta '\) ta có:

\(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta } \right) = \frac{{\left| {6.9 + 8.0 - 13} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{41}}{{10}}\)

Vậy khoảng cách giữa hai đường thẳng đã cho là \(\frac{{41}}{{10}}\)

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải:

Vì PTĐT cần tìm song song với $(\Delta)$ nên nó có dạng:

$3x-4y+m=0$

Khoảng cách từ $M$ đến đt cần tìm là:

$\frac{|3.2-4.(-2)+m|}{\sqrt{3^2+4^2}}=2$

$\Leftrightarrow |m+14|=10$

$\Rightarrow m=-4$ hoặc $m=-24$

Vậy PTĐT cần tìm là: $3x-4y-4=0$ hoặc $3x-4y-24=0$

NV
18 tháng 2 2022

Đường thẳng \(\Delta\) nhận (3;-4) là 1 vtpt

a. Do \(d_1||\Delta\) nên \(d_1\) cũng nhận (3;-4) là 1 vtpt

Phương trình d1:

\(3\left(x-2\right)-4\left(y-5\right)=0\Leftrightarrow3x-4y+14=0\)

b. Do d2 vuông góc \(\Delta\) nên d2 nhận (4;3) là 1 vtpt

Phương trình d2:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)

NV
23 tháng 4 2021

Chắc chắn đây là 1 đề bài sai rồi.

Do I cố định nên \(d\left(I;\Delta\right)\) cố định

Do đó S max khi AB max, AB max khi R max, mà R có thể tiến tới vô cực

NV
21 tháng 4 2023

Xem lại đề phương trình đường thẳng delta1