Cho tứ giác ABCD có các góc B và D là góc vuông.Từ một điểm M trên đường chéo AC vẽ \(MN\perp BC\),\(MP\perp AD\).Chứng minh:
\(\frac{MN}{AB}+\frac{MP}{CD}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì\(\hept{\begin{cases}AB\perp BC\left(\widehat{B}=90^0\right)\\MN\perp BC\left(gt\right)\end{cases}\Rightarrow AB//MN}\)( từ vuông góc đến song song )
Xét tam giác ABC có: \(AB//MN\left(cmt\right)\)
\(\Rightarrow\frac{MN}{AB}=\frac{MC}{AC}\)( hệ quả của định lý Ta-let)
Vì \(\hept{\begin{cases}AD\perp DC\left(\widehat{D}=90^0\right)\\MP\perp AD\left(gt\right)\end{cases}\Rightarrow}MP//DC\)( từ vuông góc đến song song )
Xét tam giác ADC có \(MP//DC\left(cmt\right)\)
\(\Rightarrow\frac{MP}{CD}=\frac{AM}{AC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{MC}{AC}+\frac{AM}{AC}=\frac{AC}{AC}=1\left(đpcm\right)\)
Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng
Hình vẽ:
Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)
Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)
\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)
\(\Rightarrow MN//AB\)
Mà \(AB\perp AD\Rightarrow MN\perp AD\)
Ta có
\(MN\perp BC;AB\perp BC\) => MN//AB \(\Rightarrow\frac{MN}{AB}=\frac{CM}{CA}\) (Talet trong tam giác)
\(MP\perp AD;CD\perp AD\) => MP//CD \(\Rightarrow\frac{MP}{CD}=\frac{AM}{CA}\) (Talet trong tam giác)
\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{CM}{CA}+\frac{AM}{CA}=\frac{CA}{CA}=1\left(dpcm\right)\)