Cho hai số thực x,y thỏa mãn \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). GTLN của biểu thức P=x+y
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Từ giả thiết ta có:
\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)
\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)
\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)