Help me:(( Giúp mình câu b+c bài hình và bài 5 nha, cảm ơn mọi người trước ạ:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5
Bài 1:
a: \(=-10x^3+20x^4-5x\)
b: \(=\dfrac{1}{3}a^2b+7a^5-1\)
c: \(=a^3+8+25-a^3=33\)
d: \(=x^2-16+8-x^3=-x^3+x^2-8\)
e: \(=a^3+1+8-a^3=9\)
f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)
g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)
\(=\dfrac{3x-4}{2x\left(x+3\right)}\)
Bài 2:
a: Ta có: Om là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{xOm}=\widehat{yOm}=\dfrac{180^0}{2}=90^0\)
Do đó: Om\(\perp\)xy
b: Ta có: \(\widehat{xOa}+\widehat{mOa}=90^0\)
\(\widehat{mOb}+\widehat{yOb}=90^0\)
mà \(\widehat{mOa}=\widehat{yOb}\)
nên \(\widehat{xOa}=\widehat{mOb}\)
4.2:
a: x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
=>x^2-x+1 ko có nghiệm
b: 3x-x^2-4
=-(x^2-3x+4)
=-(x^2-3x+9/4+7/4)
=-(x-3/2)^2-7/4<=-7/4<0 với mọi x
=>3x-x^2-4 ko có nghiệm
5:
a: x^2+y^2=25
x^2-y^2=7
=>x^2=(25+7)/2=16 và y^2=16-7=9
x^4+y^4=(x^2)^2+(y^2)^2
=16^2+9^2
=256+81
=337
b: x^2+y^2=(x+y)^2-2xy
=1^2-2*(-6)
=1+12=13
x^3+y^3=(x+y)^3-3xy(x+y)
=1^3-3*1*(-6)
=1+18=19
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
Bài 5:
a: \(=4x^2y^3\)
b: \(=\dfrac{9}{2}x^2y\)
c: \(=xyz^2\left(\dfrac{3}{4}-\dfrac{1}{4}+\dfrac{1}{2}\right)=xyz^2\)
Bài 4
Nhóm 1: \(\dfrac{5}{3}x^2y,2x^2y,x^2y,\dfrac{1}{2}x^2y,\dfrac{-1}{2}x^2y,\dfrac{-2}{5}x^2y,0x^2y,-4x^2y\)
Nhóm 2: \(\left(xy\right)^2,3x^2y^2\)
Bài 5
\(a,3x^2y^3+x^2y^3\)
\(=4x^2y^3\)
\(b,5x^2y-\dfrac{1}{2}x^2y\)
\(=\left(5-\dfrac{1}{2}\right)\left(x^2y\right)\)
\(=\dfrac{9}{2}x^2y\)
\(c,\dfrac{3}{4}xyz^2+\dfrac{1}{2}xyz^2-\dfrac{1}{4}xyz^2\)
\(=\left(\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{1}{4}\right)\left(xyz^2\right)\)
\(=\left(\dfrac{3}{4}+\dfrac{2}{4}-\dfrac{1}{4}\right)\left(xyz^2\right)\)
\(=xyz^2\)
Bài 6
\(a,\left(-2xy^3\right)\left(\dfrac{1}{3}xy\right)^2\)
\(=\left(-2.\dfrac{1}{9}\right)\left(x.x^2\right)\left(y^3y^2\right)\)
\(=\dfrac{-2}{9}x^3y^5\)
Bậc: 3 + 5 = 8
Hệ số: \(\dfrac{-2}{9}\)
\(b,18x^2y^2\left(\dfrac{-1}{6}x^3y\right)\)
\(=\left(-18.\dfrac{1}{6}a\right)\left(x^2x^2\right)\left(y^2y^3\right)\)
\(=-3ax^4y^5\)
Bậc: 4 + 5 = 9
Hệ số: \(-3a\)