Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
1)
\(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=\frac{-7}{20}\)
\(x=\frac{1}{4}:\frac{-7}{20}=\frac{1}{4}\cdot\frac{20}{-7}=\frac{-5}{7}\)
2) Giải:
Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Suy ra: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Vì \(\frac{x}{8}=2\Rightarrow x=8\cdot2=16\)
\(\frac{y}{12}=2\Rightarrow y=12\cdot2=24\)
\(\frac{z}{15}=2\Rightarrow z=15\cdot2=30\)
Vậy x=16
y=24
z=30
tick mình nha
1)=> 1/4 :x =2/5 - 3/4
=>1/4:x=-7/20
=>x=1/4:-7/20
=>x=-5/7
vậy x=-5/7
2) => x/8=y/12 ; y/12=z/15
Apa dụng tính chất của dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x+y-z / 8+12-15 = 10/5 = 2
=>x=16
y=24
z=30
Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)
\(y-3x=2\)\(\Rightarrow\)\(y+2=3x\) (2)
Thay (2) vào (1) ta có:
\(5\left(x+2\right)=\left(y+2\right)+8\)
\(5x+10=3x+8\)
\(5x-3x=8-10\)
\(2x=-2\)
\(x=-2:2\)
\(x=-1\)
Vậy: x=-1
Chúc bạn làm bài tốt!
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5