K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

Giải :

Ta có : a1 < a3 ; a2 < a3

=>  a1 + a2 + a3 < a3 + a3 + a3                      

hay a1 + a2 + a3 < 3.a3                                   (1)

Lại có : a< a6 ; a5 < a6

=> a4 + a5 + a6 < a6 + a6 + a6

hay a4 + a5 + a6 < 3. a6                                       (2)

 Có : a7 < a9 ; a8 < a9

=> a7 + a8 + a9 < a9 + a9 + a9

Hay a7 + a8 + a9 < 3. a9                             (3)

Từ (1), (2), và (3),

=>\(\frac{a_1+a_2+a_3+...+a_9}{a_3+a_6+a_9}=\frac{\left(a_1+a_2+a_3\right)+\left(a_4+a_5+a_6\right)+\left(a_7+a_8+a_9\right)}{a_3+a_6+a_9}<\frac{3.a_3+3.a_6+3.a_9}{a_6+a_6+a_9}=3\)

 

 

3 tháng 1 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b khác dấu thì a < 0 và b > 0.

Suy ra (a/b) < (0/b) = 0 tức là a/b âm.

22 tháng 8 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

9 tháng 7 2016

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

Có:

  • \(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

  • \(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Với x-1 ta có:

\(f\left(x\right)=a+b+c=0\)

Vậy x 1 nghiệm của đa thức f(x)

abcd=100ab+ cd=100.2.cd+cd=201.cd 

Vì 201 chia hết cho 67=> abcd chia hết cho 67 (Dpcm)

17 tháng 1 2016

abcd=100ab+cd=100.2.cd+cd=201.cd

Vì 201 chia hết cho 67 

=> abcd chia hết cho 67 

=> (ĐPCM)

22 tháng 4 2016

m.n >0 thì m;n cùng dương hoặc cùng âm

ta có: (x+2)^2 >=0

xét trường hợp m;n cùng dương

m(x+2)^2 >=0 và n > 0=> m(x+2)^2 + n >0 => vô nghiệm 

xét trường hợp m;n cùng âm

m(x+2)^2 <=0 và n<0 => m(x+2)^2 + n <=0 => vô nghiệm

17 tháng 1 2017

a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b 
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên) 
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên 
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b

3 tháng 12 2015

Mình có cách hay hơn nè!

=> ( 5a+3b ) chia hết cho 13

=> 30a + 18b chia hết cho 13

Mà: 26a chia hết cho 13

       13b chia hết cho 13

=> 30a - 26a + 18b + 13b chia hết cho 13

=> 4a +31b chia hết cho 13

=> đpcm

10 tháng 11 2018

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.