K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

3 tháng 1 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b khác dấu thì a < 0 và b > 0.

Suy ra (a/b) < (0/b) = 0 tức là a/b âm.

2 tháng 8 2015

a/b > 0 <=> a, b cùng dấu

a/b < 0 <=> a, b # dấu

9 tháng 11 2015

ko bik làm thông cảm nha( OLM đừng xóa )

10 tháng 11 2015

a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ

=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn

Vậy tổgg só là số vô tỉ

10 tháng 11 2015

là số vô tỉ

cô Loan viết xong không xem lại đề

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.

Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$

$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)

Điều này vô lý do $y$ là số vô tỉ.

$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.

Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.

-------------------------------

Chứng minh $xy$ vô tỉ.

Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$

$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.

-------------------------------

CM $\frac{x}{y}$ vô tỉ.

Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$

$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.