K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 12 2020

Gọi O là hình chiếu vuông góc của S lên đáy

Do \(SA=SB=SC=SD\Rightarrow OA=OB=OC=OD\)

\(\Rightarrow ABCD\) là hình vuông

Gọi P là trung điểm SD \(\Rightarrow NP//CD\Rightarrow NP//AB\)

\(\Rightarrow ABNP\) là thiết diện của (ABN) và chóp

\(NP=\dfrac{1}{2}CD=\dfrac{a}{2}\)

\(AP=\dfrac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)

Gọi H là chân đường cao hạ từ P xuống AB, do ABNP là hình thang cân nên:

\(PH=\sqrt{AP^2-\left(\dfrac{AB-NP}{2}\right)^2}=\dfrac{a\sqrt{11}}{4}\)

\(S_{ABNP}=\dfrac{1}{2}.PH.\left(NP+AB\right)=...\)

Nối dài DM cắt BC kéo dài tại E

Theo talet: \(\dfrac{EB}{EC}=\dfrac{BM}{CD}=\dfrac{1}{2}\Rightarrow\) B là trung điểm EC

\(\Rightarrow BN\) là đường trung bình tam giác SEC \(\Rightarrow BN//SE\Rightarrow BN//\left(SMD\right)\)

Ở câu c, K là điểm nào vậy bạn?

Cách xác định I; J:

Trong mp (SAC), nối AN cắt SO tại I

Trong mp (ABCD), nối CM cắt BD tại R

Trong mp (SMC), nối MN cắt SR tại J

2 tháng 9 2019

Tham khảo hình vẽ bên.

Gọi P, Q lần lượt là trung điểm của CD, SD. Khi đó thiết diện tạo bởi mặt phẳng (OMN) với hình chóp là hình thang MNPQ. Thật vậy:

Chọn B.

16 tháng 8 2019



3 tháng 1 2019

7 tháng 6 2018

Đáp án là A

28 tháng 4 2018

Đáp án A

Thiết diện là ngũ giác KPNIM.

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

31 tháng 8 2023

Gọi P là giao điểm của mặt phẳng (EMN) với cạnh AB. Ta có ME là đường trung bình của tam giác SAB, nên ta có ME song song với đoạn thẳng AB và ME = 1/2 * AB. Tương tự, ta cũng có MN song song với cạnh SC và MN = 1/2 * SC. Vì EMN là tam giác đều, nên ta có EP = EN = NP = 1/3 * EMN.

Vì E là trung điểm của SA, nên ta có SE = 1/2 * SA. Vì SN là đường trung bình của tam giác SCA, nên ta có SN = 1/2 * SC.

Từ các thông tin trên, ta có thể xác định các điểm P, E, và N trên hình chóp S.ABCD. Sau đó, ta vẽ đường thẳng EN và vẽ đường thẳng qua P song song với đáy ABCD, giao điểm của hai đường thẳng này là điểm M.

Vậy, thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (EMN) là một hình bình hành có các đỉnh là các điểm E, M, N và các cạnh là các đoạn thẳng EM, MN, NE.

23 tháng 5 2018

Đáp án A