Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là hình chiếu vuông góc của S lên đáy
Do \(SA=SB=SC=SD\Rightarrow OA=OB=OC=OD\)
\(\Rightarrow ABCD\) là hình vuông
Gọi P là trung điểm SD \(\Rightarrow NP//CD\Rightarrow NP//AB\)
\(\Rightarrow ABNP\) là thiết diện của (ABN) và chóp
\(NP=\dfrac{1}{2}CD=\dfrac{a}{2}\)
\(AP=\dfrac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)
Gọi H là chân đường cao hạ từ P xuống AB, do ABNP là hình thang cân nên:
\(PH=\sqrt{AP^2-\left(\dfrac{AB-NP}{2}\right)^2}=\dfrac{a\sqrt{11}}{4}\)
\(S_{ABNP}=\dfrac{1}{2}.PH.\left(NP+AB\right)=...\)
Nối dài DM cắt BC kéo dài tại E
Theo talet: \(\dfrac{EB}{EC}=\dfrac{BM}{CD}=\dfrac{1}{2}\Rightarrow\) B là trung điểm EC
\(\Rightarrow BN\) là đường trung bình tam giác SEC \(\Rightarrow BN//SE\Rightarrow BN//\left(SMD\right)\)
Ở câu c, K là điểm nào vậy bạn?
Cách xác định I; J:
Trong mp (SAC), nối AN cắt SO tại I
Trong mp (ABCD), nối CM cắt BD tại R
Trong mp (SMC), nối MN cắt SR tại J
Trong tam giác SBD, MN là đường trung bình \(\Rightarrow MN||BD\)
\(\Rightarrow MN||\left(ABCD\right)\)
Trong mp (ABCD), qua E kẻ đường thẳng song song BD cắt BC tại F và cắt AD kéo dài tại G
Trong mp (SAD), nối GN kéo dài cắt SA tại P
Ngũ giác PNEFM là thiết diện của (MNE) và chóp
a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.
Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.
Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.
b) Với M không trùng với A':
Gọi I ∈ B′M ∩ C′N. Ta có:
I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)
Như vậy I ∈ Δ = (SAB) ∩ (SCD).
Chọn đáp án C
Trong mp (ABCD), gọi
Do đó ngũ giác EHFGJ là thiết diện của hình chóp cắt bởi (EFG)
a/ \(\left\{{}\begin{matrix}S=\left(SAB\right)\cap\left(SCD\right)\\Sx//AB//CD\end{matrix}\right.\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\)
b/ \(\left(MCD\right)\cap\left(ABCD\right)=CD\)
\(\left(MCD\right)\cap\left(SBC\right)=MC\)
\(\left(MCD\right)\cap\left(SCD\right)=CD\)
\(\left(MCD\right)\cap\left(SAB\right)=My\left(My//AB//CD\right)\)
\(\Rightarrow TD:CDM\)
Vậy thiết diện là hình tam giác.
P/s: Chắc bạn sẽ thắc mắc tại sao lại ko xét trường hợp (MCD) cắt (SAD). Bởi vì chúng ko có giao tuyến :)
a) Ta có:
- M là trung điểm của AB, nên M là trung điểm của đoạn thẳng AB.
- P là trung điểm của SC, nên P là trung điểm của đoạn thẳng SC.
- I là trung điểm của SB, nên I là trung điểm của đoạn thẳng SB.
Vì M, P, I lần lượt là trung điểm của các đoạn thẳng AB, SC, SB, nên ta có:
2AM = AB, 2CP = CS, 2BI = BS.
Giả sử BC không song song với MP. Khi đó, ta có:
- MP cắt BC tại H.
- MP cắt SA tại K.
- MP cắt QN tại L.
Theo định lý , ta có:
AH/HC = AK/KS = AL/LQ.
Từ đó, ta có:
2AM/2CP = AK/KS = AL/LQ.
Tuy nhiên, ta đã biết rằng 2AM/2CP = AB/CS = BS/CS = BI/CS = 2BI/2CP.
Vậy ta có:
2BI/2CP = AK/KS = AL/LQ.
Do đó, ta có AK = AL và KS = LQ.
Từ đó, ta suy ra K = L và Sẽ có MP song song với BC.
Vậy BC // (IMP).
b) Thiết diện của mặt phẳng (α) với hình chóp là một hình tam giác. Để xác định hình tam giác này, cần biết thêm thông tin về góc giữa mặt phẳng (α) và mặt phẳng đáy ABC.
c) Đường thẳng CN và mặt phẳng (SMQ) giao nhau tại một điểm. Để tìm giao điểm này, cần biết thêm thông tin về góc giữa đường thẳng CN và mặt phẳng (SMQ).
--thodagbun--
(Bn tham khảo cách lm đy nhe )
Lời giải:
Gọi $Q$ là điểm nằm trên $DC$ sao cho $AD\parallel PQ$
Khi đó: $MN\parallel AD\parallel PQ$ nên $Q\in (MNP)$
$(MNPQ)$ chính là thiết diện của hình chóp cắt bởi $(MNP)$
Giờ ta cần tìm diện tích hình thang $MNPQ$
$SA=SD; DB=SC; AB=CD$ nên $\triangle SAB=\triangle SDC$
Tương ứng ta có $MP=NQ$
$MN=\frac{AD}{2}=\frac{3a}{2}$
$PQ=AD=3a$
$\Rightarrow MNPQ$ là hình thang cân.
Áp dụng định lý cos:
$\cos \widehat{SAB}=\frac{SA^2+AB^2-SB^2}{2SA.AB}=\frac{MA^2+AP^2-MP^2}{2MA.AP}$
$\Leftrightarrow \frac{9a^2+9a^2-27a^2}{2.3a.3a}=\frac{\frac{9}{4}a^2+4a^2-MP^2}{2.\frac{3}{2}a.2a}$
$\Rightarrow MP^2=\frac{37}{4}a^2$
$\Rightarrow h_{MNPQ}=\sqrt{MP^2-(\frac{PQ-MN}{2})^2}=\frac{\sqrt{139}}{4}a$
Diện tích thiết diện:
$S=\frac{MN+PQ}{2}.h=\frac{9\sqrt{139}}{16}a^2$