Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi giao điểm của AB và DM là K
Ta có: D đối xứng M qua AB
=>AB là đường trung trực của MD
=>AB\(\perp\)MD tại K và K là trung điểm của MD
Ta có: MK\(\perp\)AB
AC\(\perp\)AB
Do đó: MK//AC
Xét ΔABC có
M là trung điểm của BC
MK//AC
Do đó: K là trung điểm của AB
Xét tứ giác AMBD có
K là trung điểm chung của AB và MD
=>AMBD là hình bình hành
Hình bình hành AMBD có AB\(\perp\)MD
nên AMBD là hình thoi
b: Xét ΔABC có
M,K lần lượt là trung điểm của BC,BA
=>MK là đường trung bình của ΔABC
=>MK//AC và \(MK=\dfrac{AC}{2}\)
Ta có: \(MK=\dfrac{AC}{2}\)
\(MK=\dfrac{MD}{2}\)
Do đó: AC=MD
mà AC=AE
nên MD=AE
Xét tứ giác AMDE có
DM//AE
DM=AE
Do đó: AMDE là hình bình hành
=>DE//AM
Ta có: DE//AM
BD//AM
DE,BD có điểm chung là D
Do đó: D,B,E thẳng hàng
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)
Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).
b) Áp dụng tính chất đối xứng trục ta có:
A H = A M , A 1 ^ = A 2 ^ và A K = A M , A 3 ^ = A 4 ^ .
Mà A 2 ^ + A 3 ^ = 900 Þ H, A, K thẳng hàng.
Lại có AH = AM = AK Þ H đối xứng với K qua A.
c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^ mà AM là đường trung tuyến.
Þ DABC vuông cân tại A.
a: Xét ΔBAC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔBAC
Suy ra: MD//AC
hay ME\(\perp\)AB
mà ME cắt AB tại trung điểm của ME
nên E và M đối xứng nhau qua AB
b: Xét tứ giác AEMC có
AC//ME
AC=ME
Do đó: AEMC là hình bình hành