K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi giao điểm của AB và DM là K

Ta có: D đối xứng M qua AB

=>AB là đường trung trực của MD

=>AB\(\perp\)MD tại K và K là trung điểm của MD

Ta có: MK\(\perp\)AB

AC\(\perp\)AB

Do đó: MK//AC

Xét ΔABC có

M là trung điểm của BC

MK//AC

Do đó: K là trung điểm của AB

Xét tứ giác AMBD có

K là trung điểm chung của AB và MD

=>AMBD là hình bình hành

Hình bình hành AMBD có AB\(\perp\)MD

nên AMBD là hình thoi

b: Xét ΔABC có

M,K lần lượt là trung điểm của BC,BA

=>MK là đường trung bình của ΔABC

=>MK//AC và \(MK=\dfrac{AC}{2}\)

Ta có: \(MK=\dfrac{AC}{2}\)

\(MK=\dfrac{MD}{2}\)

Do đó: AC=MD

mà AC=AE

nên MD=AE

Xét tứ giác AMDE có

DM//AE

DM=AE

Do đó: AMDE là hình bình hành

=>DE//AM

Ta có: DE//AM

BD//AM

DE,BD có điểm chung là D

Do đó: D,B,E thẳng hàng

 

29 tháng 5 2017

a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)

Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.

DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)

Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.

b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.

c) Chu vi tứ giác AEBM là 4BM = 8 (cm)

d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.

10 tháng 7 2018

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

19 tháng 10 2021

a: Xét ΔBAC có 

M là trung điểm của BC

D là trung điểm của AB

Do đó: MD là đường trung bình của ΔBAC

Suy ra: MD//AC

hay ME\(\perp\)AB

mà ME cắt AB tại trung điểm của ME

nên E và M đối xứng nhau qua AB

b: Xét tứ giác AEMC có 

AC//ME

AC=ME

Do đó: AEMC là hình bình hành