Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng vớ M qua AB, E là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

26 tháng 11 2016

a,

AEMF là hcn

AMBH là hthoi

AMCK là hthoi

b,cm thế nào nhỉ :V, khó nói ra quá, đại lạo thế này

cm h,a,k thẳng hàng (dựa vào hthoi)

cm ha=hk (=am)

rồi xong

c, cái này thì ko biết nói thật nè :V, chỉ có thể nói nó là tam giác vuông cân thôi

26 tháng 11 2016

AEMF là hcn

AMBH là hthoi

AMCK là hthoi

b,cm thế nào nhỉ :V, khó nói ra quá, đại lạo thế này

cm h,a,k thẳng hàng (dựa vào hthoi)

cm ha=hk (=am)

rồi xong

c, cái này thì ko biết nói thật nè :V, chỉ có thể nói nó là tam giác vuông cân thôi

24 tháng 6 2016

Hình vẽ đơn giản nên em có thể tự vẽ nhé.

a. Tứ giác AEMF là hình chữ nhật, AMBH hình thoi, AMCK là hình thoi.

b. Ta thấy AH = AM = AK. Lại có góc HAM+MAK = 2(BAM+MAC) = 2.90 = 180 độ. Vậy K đối xứng với H qua A.

c. Để AEMH là hình vuông thì ME = MF hay AC= AB. Vậy tam giác giác vuông ABC phải thêm điều kiện cân thì thì AEMH là hình vuông.

23 tháng 11 2023

Sửa đề: K là điểm đối xứng của M qua AC

a: M đối xứng H qua AB

=>AB là đường trung trực của MH

=>AB vuông góc MH tại trung điểm của MH

=>AB vuông góc MH tại E và E là trung điểm của MH

M đối xứng K qua AC

=>AC là đường trung trực của MK

=>AC vuông góc với MK tại trung điểm của MK

=>AC vuông góc với MK tại F và F là trung điểm của MK

ME\(\perp\)AB

AC\(\perp\)AB

Do đó: ME//AC

MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

Xét tứ giác AMBH có

E là trung điểm của AB và MH

Do đó: AMBH là hình bình hành

Hình bình hành AMBH có MH\(\perp\)AB

nên AMBH là hình thoi

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

b: AMBH là hình thoi

=>AB là phân giác của góc MAH

=>\(\widehat{MAH}=2\cdot\widehat{BAM}\)

AMCK là hình thoi

=>AC là phân giác của góc MAK

=>\(\widehat{MAK}=2\cdot\widehat{MAC}\)

\(\widehat{MAH}+\widehat{MAK}=\widehat{KAH}\)

=>\(\widehat{KAH}=2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)\)

=>\(\widehat{KAH}=2\cdot90^0=180^0\)

Do đó: K,A,H thẳng hàng

mà AH=AK(=AM)

nên A là trung điểm của HK

c: Để hình chữ nhật AEMF trở thành hình vuông thì AE=AF

mà \(AE=\dfrac{AB}{2};AF=\dfrac{AC}{2}\)

nên AB=AC