Cho nửa đường tròn (O) đường kính AB và 1 điểm C trên nửa đường tròn sao cho BC = BO. Tia AC cắt tiếp tuyến kẻ từ B với nửa đường tròn ở D
a, C/m: BC2 = AC.CD
b, Cho biết bán kính (O) là 4cm. Tính BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow BC\perp AD$
$\widehat{ABD}=90^0$ (theo tính chất tiếp tuyến)
$\Rightarrow \triangle ABD$ vuông tại $B$
Vậy tam giác $ABD$ vuông tại $B$ có đường cao $BC$. Áp dụng công thức hệ thức lượng:
$BC^2=AC.CD$ (đpcm)
b.
$BO=BC=OC$ nên $BOC$ là tam giác đều
$\Rightarrow \widehat{CBO}=60^0$
$\Rightarrow \widehat{DAB}=\widehat{CAD}=30^0$
Xét tam giác $ABD$ vuông:
$BC=AB\tan \widehat{DAB}=2R\tan 30^0=8\tan 30^0=\frac{8\sqrt{3}}{3}$ (cm)
sao cho gì vậy bạn?
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)AD
Xét ΔDBA vuông tại B có BC là đường cao
nên \(BC^2=CA\cdot CD\)
b: Bạn bổ sung dữ kiện đề bài đi bạn
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔBAD vuông tại B có BC là đường cao
nên \(BC^2=CA\cdot CD\)
a: Xét (O) có
MA.MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADB=1/2*180=90 độ
=>góc ADM=90 độ=góc AEM
=>AMDE nội tiếp
b: AMDE nội tiếp
=>góc ADE=góc AMO=góc ACO
a, 700 góc nào bạn ?
b, Vì AB là tiếp tuyến (O) => ^ABO = 900
AO giao BC = K
AB = AC ; OB = OC = R
Vậy OA là đường trung trực đoạn BC
Xét tam giác ABO vuông tại B, đường cao BK
Áp dụng định lí Pytago tam giác ABO vuông tại B
\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm
Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm
Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm
Chu vi tam giác ABC là :
\(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm