Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao cho gì vậy bạn?
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)AD
Xét ΔDBA vuông tại B có BC là đường cao
nên \(BC^2=CA\cdot CD\)
b: Bạn bổ sung dữ kiện đề bài đi bạn
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔBAD vuông tại B có BC là đường cao
nên \(BC^2=CA\cdot CD\)
ta có:
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)
Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến
Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)
Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)
Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC
Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)
\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)
a, Xét ΔΔ ABC có OA=OB=OC=12AB.OA=OB=OC=12AB.
⇒Δ⇒Δ ABC vuông tại CC ⇒AC⊥BC.⇒AC⊥BC.
Ta có AD là tiếp tuyến của nửa đường tròn tâm O nên AD ⊥⊥ AB.
Trong ΔΔ ABD vuông tại A có AC⊥BD⇒BC.BD=AB2.AC⊥BD⇒BC.BD=AB2.
Mà AB = 2R nên BC.BD=4R2.BC.BD=4R2.
b, Tam giác ACD vuông tại C có I là trung điểm của AD
⇒AI=DI=CI=12AD.⇒AI=DI=CI=12AD. (Tính chất đường trung tuyến ứng với cạnh huyền).
Xét tam giác AOI và COI có
OI chung
OA = OC
AI = CI
⇒ΔAOI=ΔCOI(c−c−c).⇒ΔAOI=ΔCOI(c−c−c). ⇒ˆIAO=ˆICO⇒IAO^=ICO^ (hai góc tương ứng).
Mà ˆIAO=900⇒ˆICO=900IAO^=900⇒ICO^=900 hay IC ⊥⊥OC
⇒⇒IC là tiếp tuyến của nửa đường tròn tâm O.
c, Ta có AD//CH (cùng vuông góc với AB)
Trong tam giác BAI có KH // AI ⇒KHAI=BKBI⇒KHAI=BKBI (định lý Ta-lét).
Trong tam giác BDI có CK // DI ⇒CKDI=BKBI⇒CKDI=BKBI (định lý Ta-lét).
Suy ra KHAI=CKDI.KHAI=CKDI.
Mà AI = DI nên KH = CK hay K là trung điểm của CH. (điều phải chứng minh).
Lời giải:
Ta có:
$\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow BC\perp AD$
$\widehat{ABD}=90^0$ (theo tính chất tiếp tuyến)
$\Rightarrow \triangle ABD$ vuông tại $B$
Vậy tam giác $ABD$ vuông tại $B$ có đường cao $BC$. Áp dụng công thức hệ thức lượng:
$BC^2=AC.CD$ (đpcm)
b.
$BO=BC=OC$ nên $BOC$ là tam giác đều
$\Rightarrow \widehat{CBO}=60^0$
$\Rightarrow \widehat{DAB}=\widehat{CAD}=30^0$
Xét tam giác $ABD$ vuông:
$BC=AB\tan \widehat{DAB}=2R\tan 30^0=8\tan 30^0=\frac{8\sqrt{3}}{3}$ (cm)
Hình vẽ: