K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

+/ Vì AH là đường cao ứng với đáy CD của hbh ABCD (gt) => Diện tích hbh ABCD=AH.CD (1)

Vì AK là đường cao ứng với đáy BC của hbh ABCD (gt) => Diện tích hbh ABCD=AK.BC (2)

Từ (1) và (2)=> AH.CD=AK.BC <=> AH/BC = AK/CD

Vì ABCD là hbh (gt)=> AB=CD (t/c hbh)

=> AH/BC=AK/AB

+/ Vì ABCD là hbh (gt)=> AB//CD (t/c hbh)

Mà AH vuông góc CD (gt)

=> AH vuông góc AB (định lí từ vuông góc đến song song)=> góc HAB=90o <=> góc KAH + góc BAK= 90o

Vì AK vuông góc BC (gt) => tam giác ABK vuông ở K có góc BAC + góc ABC= 90o (2 góc phụ nhau)

=> góc KAH = góc ABC (cùng phụ góc BAK)

+/ Xét tam giác KAH và tam giác ABC có:

- AH/BC=AK/AB (cmt)

- góc KAH=góc ABC (cmt)

=> tam giác KAH đồng dạng tam giác ABC (c.g.c)

<=> góc AKH = góc BAC (khái niệm về tam giác đồng dạng)

Mà AB//CD (cmt)=> góc BAC=góc ACH (2 góc so le trong)

=> góc AKH= góc ACH (cùng bằng góc BAC) (đpcm)

9 tháng 3 2021

a/ Xét tg vuông AHD và tg vuông AKB có 

\(\widehat{BAK}+\widehat{ABC}=90^o\)

\(\widehat{DAH}+\widehat{ADC}=90^o\)

Mà \(\widehat{ABC}=\widehat{ADC}\) (Hai góc đối của hbh)

\(\Rightarrow\widehat{DAH}=\widehat{BAK}\)

=> tg AHD đồng dạng với tg AKB \(\Rightarrow\frac{AH}{AK}=\frac{DA}{AB}\) mà AB = DC (hai cạnh đối của hbh) \(\Rightarrow\frac{AH}{AK}=\frac{DA}{DC}\left(dpcm\right)\)

b/ Ta có K và H đều nhìn AC dưới 1 góc 90 độ

=> Tứ giác AKCH là tứ giác nội tiếp đường tròn đường kính AC 

=> sđ \(\widehat{AKH}\) = sđ \(\widehat{ACH}\) = 1/2 sđ cung AH (Góc nội tiếp đường tròn) \(\Rightarrow\widehat{AKH}=\widehat{ACH}\left(dpcm\right)\)

27 tháng 1 2022

a) - Ta có: SABCD=AH.BC=AK.AB.

=>\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\)

- Ta có: \(\widehat{ABC}+\widehat{BAD}=180^0\) (AD//BC).

=>\(\widehat{ABC}+\widehat{BAH}+\widehat{HAK}+\widehat{KAD}=180^0\)

=>\(90^0+\widehat{HAK}+\widehat{KAD}=180^0\)

=>\(\widehat{HAK}+\widehat{KAD}=90^0\) mà \(\widehat{KAD}+\widehat{ADK}=90^0\) (tam giác ADK vuông tại K) nên \(\widehat{HAK}=\widehat{ADK}\) mà \(\widehat{ADK}=\widehat{ABC}\) (ABCD là hình bình hành) nên\(\widehat{HAK}=\widehat{ABC}\)

- Xét tam giác AKH và tam giác BCA có:

\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\) (cmt)

\(\widehat{HAK}=\widehat{ABC}\) (cmt)

=> Tam giác AKH ∼ Tam giác BCA (c-g-c).

b) - Ta có: Tam giác AKH ∼ Tam giác BCA (cmt) nên:

\(\widehat{AKH}=\widehat{ACB}=40^0\) (2 góc tương ứng)

 

19 tháng 1 2018

Vì AD.AH = AB.AK ( = S A B C D ) nên  A H A K = A B A D = A B B C

Ta lại có AB // CD (vì ABCD là hình bình hành) mà AK ⊥ DC => AK ⊥ AB

=> BAK = 90 ∘ .

Từ đó góc HAK = ABC (cùng phụ với BAH)

Nên ΔAKH ~ ΔBCA (c.g.c) ⇒ A K H ^ = A C B ^ = 40 ∘

Đáp án: B