K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

Bạn phải xác định rằng cái dấu " + " và " - " của a là gì chớ.Có hai trường hợp :

 \("4x^2-7x+a"\) hay \("4x^2-7x-a"\)

+) Trường hợp 1 :

4x^2 - 7x + a x - 1 4x - 3 4x^2 - 4x - -3x + a -3x + 3 a - 3

Để \(\left(4x^2-7x+a\right)⋮\left(x-1\right)\) thì a - 3= 0 => a = 3

+) Trường hợp 2 : -a - 3 = 0 => -a = 3 => a = -3

Đề bài này tìm a hay tìm số dư ?

2 tháng 5 2019

14 tháng 9 2019

Bài làm lâu quá, chọn mk đúng nhé !!!


a)    Có     (139139 . 133 - 133133 . 139) : (2 + 4 + 6 + ... + 2002)
       =(139*1001*133 - 133*1001*139) : (2 + 4 + 6 + ... + 2002)
       =                          0                   : (2 + 4 + 6 + ... + 2002)
       =                                        0
b)   Năm 2002 và năm 2012 cách nhau 10, trong đó có 3 năm nhuận, suy ra 2 năm này cách nhau 365 * 10 + 1 + 1 + 1 = 3653 (ngày)
Mà 3653 chia 7 dư 6 nên ngày đó là thứ 7

c) Gọi STN đó là x
Theo đề bài, ta có: x = 18k + 12
                               = (3*6)k + 2*6
                              =  3k*6 + 2*6
                              = 6*(3k + 2)
Vì 6 chia hết cho 6 nên 6*(3k+2) chia hết cho 6, hay x chia hết cho 6
mà theo đề bài x chia 6 dư 2 (Có mâu thuẫn)
Suy ra, ko tồn tại x

12 tháng 4 2022

-Áp dụng định lí Bezout:

\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)

\(\Rightarrow1+6+7-a+b=0\)

\(\Rightarrow a-b=14\left(1\right)\)

\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)

\(\Rightarrow16+48+28-2a+b=12\)

\(\Rightarrow2a-b=80\left(2\right)\)

-Từ (1) và (2) suy ra: \(a=66;b=52\)

13 tháng 4 2022

bạn ơi, tại sao lại là P(-2) ạ??

 

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

27 tháng 10 2021

1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)

\(=2x^3-x^2-2x+1\)

27 tháng 10 2021

1) \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-4x+x+2}{x+2}\)

=\(2x^3-x^2-2x+1 \)

2) \(2x^3-x^2-2x+1\)

\(\left(2x^3-2x\right)-\left(x^2-1\right)\)

\(2x\left(x^2-1\right)-\left(x^2-1\right)\)

=\(\left(x^2-1\right)\left(2x-1\right)\)