Cho tam giác ABC ,M là trung điểm của BC , biết AM = 1/2 BC . Chứng minh tam giác ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AM=\frac{BC}{2}\Rightarrow AM=BM=CM\)
=> tg ABM cân tại M \(\Rightarrow\widehat{ABC}=\widehat{BAM}\)
Và tg ACM cân tại M \(\Rightarrow\widehat{ACB}=\widehat{CAM}\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
Mà \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\)
=> tg ABC vuông tại A
a)
Sửa đề: ΔBIM=ΔCKM
Xét ΔBIM vuông tại I và ΔCKM vuông tại K có
BM=CM(M là trung điểm của BC)
\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)
A B C M
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A