Cho tam giác ABC có cạnh AB = 15cm ; AC=20cm. Trên cạnh AC lấy E sao cho AE =15cm,trên AB lấy D sao cho AD =10cm. Nối D với I .Tính diện tích ABC biết diện tích ADE=45cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nối E với B để được tam giác AEB
Diện tích của tam giác AEB là:
34,8 : 2 x 3 = 52,2 cm²
Diện tích của tam giác ABC là:
52,2 : 3 x 4 = 69,6 cm²
k nhé
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
tích nha các bạn mik hứa sẽ tích lại thề luôn
Đào Ngọc Minh Thư
Ta có hình vẽ :
( Bạn tự điền số vào nhé =)) . Mình chia phần không cân đối lắm lên bạn chia AC thành 4 phần bằng nhau nhé )
Ta thấy :
\(\frac{AM}{AB}\)\(=\)\(\frac{7,5}{15}\)\(=\frac{1}{2}\)
\(\Rightarrow\)\(AM=BM=\frac{1}{2}AB\)
Diện tích \(\Delta\)ANM = \(\frac{3}{4}\)Diện tích \(\Delta\)ACM ( Chung chiều cao hạ từ đỉnh M xuống và có đáy AN = \(\frac{3}{4}\)AC)
\(\Rightarrow\)Diện tích \(\Delta\)ACM là :
\(36\div\frac{3}{4}\)= \(48\)\(\left(cm^2\right)\)
Vì S \(\Delta ACM=\frac{1}{2}S\Delta ABC\)( Chung chiều cao hạ từ C xuống đáy AB, và đáy \(AM=\frac{1}{2}AB\))
\(\Rightarrow\)Diện tích \(\Delta\)\(ABC\)là ;
\(48\times2=96\)\(\left(cm^2\right)\)
Đáp số : 96 \(cm^2\)
nhé
Mình biểu diễn bằng hình vẽ trên.
Xét EAD và EDB chung đỉnh E, đáy AD gấp 2 lần đáy DB (10 : (15 -10) = 2)
=> S_EAD gấp 2 lần S_EDB => Diện tích EDB = 45 : 2 = 22,5 (cm2)
Diện tích BAE là : 45 + 22,5 = 67,5 (cm2)
Xét tam giác BAE và tam giác AEC có chung đỉnh B và đáy AE gấp 3 lần đáy EC (15 : (20-15) = 3)
=> Diện tích BAE gấp 3 lần diện tích AEC. Vậy diện tích AEC là : 67,5 : 3 =22,5 (cm2)
Vậy diện tích ABC là : 67,5 + 22,5 = 90 (cm2)
Mk cũng k biết cách giải nhưng mk biết đáp án là 45cm2 bạn ạ!!!!!
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)