Tìm tất cả các giá trị thực của tham số m để phương trình 9 x − 2 m + 1 3 x + 6 m − 3 = 0 có hai nghiệm trái dấu.
A. m < 1.
B. m < 1 2 .
C. m > 1 2 .
D. 1 2 < m < 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(-x^2+mx+4-m^2=0\)
\(\Leftrightarrow x^2-mx+m^2-4=0\)
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
a) Điều kiện để phương trình có hai nghiệm trái dấu là :
\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)
\(\Rightarrow0< m< 3\)
b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy > 0
\(\Rightarrow m< 4\)
Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\)
\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)
Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)
\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)
\(\Leftrightarrow m=1\left(tm\right)\)
Vậy...........
a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)
Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)
b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)
\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)
\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)
\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)
\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)
\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)
\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)
\(\Leftrightarrow2m^2+4m-10=0\)
\(\Leftrightarrow m^2+2m-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)
Đáp án D.
Phương pháp:
x 1 < 0 , x 2 > 0 ⇔ 3 x 1 < 1 ; 3 x 2 > 1
Cách giải:
Xét phương trình:
9 x − 2 m + 1 3 x + 6 m − 3 = 0 1
Đặt 3 x = t , t > 0.
Phương trình (1) trở thành:
t 2 − 2 m + 1 t + 6 m − 3 = 0 2
Tìm m để (1) có 2 nghiệm x 1 , x 2 trái dấu
⇔ Tìm m để (2) có 2 nghiệm t 1 , t 2 , t 1 < t 2
sao cho
⇔ Δ ' > 0 t 1 t 2 > 0 t 1 + t 2 > 0 t 1 − 1 < 0 t 2 − 1 > 0 ⇔ m + 1 2 − 6 m − 3 > 0 t 1 t 2 > 0 t 1 + t 2 > 0 t 1 − 1 t 2 − 1 < 0 ⇔ m 2 − 4 m + 4 > 0 t 1 t 2 > 0 t 1 + t 2 > 0 t 1 t 2 − t 1 + t 2 < 0
⇔ m − 2 2 > 0 6 m − 3 > 0 2 m + 1 > 0 6 m − 3 − 2 m + 1 + 1 < 0 ⇔ m ≠ 2 m > 1 2 1 m > − 1 m < 1 ⇔ 1 2 < m < 1