Cho hình chóp tứ giác đều S . A B C D có tất các các cạnh bằng a . Gọi α là góc giữa mặt bên và mặt đáy. Khi đó, cos α nhận giá trị nào sau đây?
A. 1 2 .
B. 6 3 .
C. 3 3 .
D. 1 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Vì 2 mp S A B , S A D vuông góc với đáy ⇒ S A ⊥ A B C D
Và ABCD là hình vuông ⇒ A B ⊥ B C ⇒ B C ⊥ m p S A B
Khi đó S C ; S A B ⏜ = S C ; S B ⏜ = B S C ⏜ = α ∈ 0 ° ; 90 °
Tam giác SBC vuông tại B, có tan B S C ⏜ = B C S B = a : a 2 = 1 2
Vậy tan α = 1 2
Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và
Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4
Vậy
Hình nón nội tiếp có đường sinh là :
Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:
Đáp án C
Ta có, CD song song mặt phẳng (SAB) chứa SA nên khoảng cách giữa SA và CD chính là khoảng cách từ CD đến (SAB).
Gọi I, K theo thứ tự là trung điểm AB, CD thì:
Trong đó H là hình chiếu từ K lên SI
Đáp án C
Ta có, CD song song mặt phẳng (SAB) chứa SA nên khoảng cách giữa SA và CD chính là khoảng cách từ CD đến (SAB).
Gọi I, K theo thứ tự là trung điểm AB, CD thì:
Phương pháp:
Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và vuông góc với giao tuyến.
Cách giải:
S . ABCD là chóp tứ giác đều cạnh bên SA = SB = SC = SD = 2a . Gọi O
là giao của AC và BD => SO ⊥ (ABCD)
Gọi H là trung điểm CD => SH ⊥ CD
Mà ABCD là hình vuông nên OC = OD => OH ⊥ CD
Ta có
=> góc giữa mặt đáy (ABCD) và mặt bên (SCD) là SHO
Ta có OH là đường trung bình của
Xét tam giác SHC, theo định lý Pytago ta có
Xét tam giác SOH vuông tại S (do SO ⊥ (ABCD))
Chọn A.
Đáp án C.
Gọi O là tâm đáy, ta kẻ O H ⊥ A B Có A B ⊥ S O ; A B ⊥ O H ⇒ A B ⊥ S O H ⇒ S K ⊥ A B .
Vậy góc giữa 2 mp S A B và A B C D là góc S H O ^ .
Có O H = a 2 ; S H = a 2 − a 2 2 = 3 2 . a ⇒ cos S H O ^ = O H S H = 1 3