Cho một số có 4 chữ số, trong đó chữ số hàng nghìn gấp đôi chữ số hàng trăm, nếu lấy tích của chữ số hàng nghìn và hàng trăm của số đó chia cho tổng của chúng thì được chữ số hàng chục, còn chữ số hàng đơn vị là hiệu của chữ chữ số hàng trăm và hàng chục của số đó. Hãy tìm số đó đã cho?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giá trị 3 số hàng trăm, chục, đơn vị là \(a,b,c\)
Khi đó: \(a=2\cdot b\)
\(c=\left(a\cdot b\right):\left(a+b\right)\)
\(c=\left(2\cdot b\cdot b\right):\left(a+b\right)\)
\(c=\dfrac{2\cdot b\cdot b}{2\cdot b+b}=\dfrac{2\cdot b\cdot b}{b\left(2+1\right)}=\dfrac{2\cdot b}{3}\)
Mà c là một số nên \(2\cdot b⋮3\) hay \(b⋮3\)
Để số hàng trăm gấp đôi số hàng chục thì:
\(a=2;b=1\)
\(a=4;b=2\)
\(a=6;b=3\)
\(a=8;b=4\)
Mà để \(b⋮3\) thì chỉ có trường hợp \(a=6;b=3\) thỏa mãn.
Vậy lúc đó \(c=6\cdot3:\left(6+3\right)=18:9=2\)
Số đó là: \(632\)
Gọi số hàng trăm, chục, đơn vị là a,b,c cho số có dạng \(\overline{abc}\)
Theo bài toán, ta có:
\(a=2\cdot b\) (hàng trăm gấp đôi hàng chục)
\(\left(a\cdot b\right):\left(a+b\right)=c\) (tích hàng trăm và chục chia cho tổng của chúng là ra giá trị hàng đơn vị)
Khi đó \(\left(2\cdot b\cdot b\right):\left(2\cdot b+b\right)=c\)
\(\dfrac{2\cdot b\cdot b}{b\left(2+1\right)}=\dfrac{2\cdot b}{3}=c\)
Mà c là một số nên \(2\cdot b⋮3\)
Mà \(2\cdot b\) là số hàng trăm nên \(2\cdot b>1\), vậy chỉ có \(b=3\) thỏa mãn.
Vậy số hàng trăm là: \(2\cdot3=6\)
Số hàng chục là \(3\)
Số hàng đơn vị là:
\(\left(3\cdot6\right):\left(3+6\right)=2\)
Vậy số cần tìm là \(632\)
Số có ba chữ số có dạng: \(\overline{abc}\) theo bài ra ta có:
a = 2 \(\times\) b nên a + b = 2\(\times\) b + b = 3 x b và a x b = 2 x b x b
suy ra: a x b : (a + b) = \(\dfrac{2\times b\times b}{3\times b}\) = c = \(\dfrac{2}{3}\) x b vậy b = 3; 6; 9
Lập bảng ta có
b | 3 | 6 | 9 |
c = \(\dfrac{2}{3}\) x b | 2 | 4 | 6 |
a = b x 2 | 6 | 12 (loại) | 18 (loại) |
\(\overline{abc}\) | 632 |
Theo bảng trên ta có: số thỏa mãn đề bài là: 632