K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Đáp án D

A = a − 4 a 4 − a 1 2 + a 4 − a 1 2 = − 4 − a a 4 − a 1 2 + a 4 − a 1 2 = − 4 − a 1 2 a 1 2 + a 4 − a 1 2 = 0

23 tháng 10 2021

\(a,P=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\\ P=\sqrt{a}+2+2+\sqrt{a}=2\sqrt{a}+4\\ b,P=a+1\Leftrightarrow a+1=2\sqrt{a}+4\\ \Leftrightarrow a-2\sqrt{a}-3=0\\ \Leftrightarrow\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)=0\\ \Leftrightarrow\sqrt{a}=3\left(\sqrt{a}\ge0\right)\\ \Leftrightarrow a=9\left(tm\right)\)

14 tháng 7 2021

a) \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\)

\(=\sqrt{a}+2+\sqrt{a}+2=2\sqrt{a}+4\)

b) \(P=a+1\Rightarrow2\sqrt{a}+4=a+1\Rightarrow a-2\sqrt{a}-3=0\)

\(\Rightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)=0\) mà \(\sqrt{a}+1>0\Rightarrow\sqrt{a}=3\Rightarrow a=9\)

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 ,...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)

\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)

22 tháng 5 2021

hình như sai rồi thầy ơi

31 tháng 10 2017

a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)

\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)

=1/2y+3/4-3/2y-3/2

=-y-3/4

11 tháng 8 2020

\(=\left(a^2-1\right)^3-\left(a^6-1\right)\)

\(=a^6-3a^4+3a^2-1-a^6+1\)

\(=-3a^4+3a^2\)

\(=-3a^2\left(a^2-1\right)\)

10 tháng 10 2023

loading...  loading...  

18 tháng 5 2021

`P=(sqrta+3)/(sqrta-2)-(sqrta-1)/(sqrta+2)+(4sqrta-4)/(4-a)`

`đk:x>=0,x ne 4`

`P=(a+5sqrta+6-a+3sqrta-2-4sqrta+4)/(a-4)`

`=(4sqrta+8)/(a-4)`

`=4/(sqrta-2)`

`b)a=9`

`=>P=4/(3-2)=4`

a) Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)

\(=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{4\sqrt{a}+8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}=\dfrac{4}{\sqrt{a}-2}\)

b) Thay a=9 vào P, ta được:

\(P=\dfrac{4}{\sqrt{9}-2}=\dfrac{4}{3-2}=\dfrac{4}{1}=4\)

Vậy: khi a=9 thì P=4